Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0303686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38781128

RESUMO

The intracellular protozoan parasite Leishmania causes leishmaniasis in humans, leading to serious illness and death in tropical and subtropical areas worldwide. Unfortunately, due to the unavailability of approved vaccines for humans and the limited efficacy of available drugs, leishmaniasis is on the rise. A comprehensive understanding of host-pathogen interactions at the molecular level could pave the way to counter leishmaniasis. There is growing evidence that several intracellular pathogens target RNA interference (RNAi) pathways in host cells to facilitate their persistence. The core elements of the RNAi system are complexes of Argonaute (Ago) proteins with small non-coding RNAs, also known as RNA-induced silencing complexes (RISCs). Recently, we have shown that Leishmania modulates Ago1 protein of host macrophages for its survival. In this study, we biochemically characterize the Ago proteins' interactome in Leishmania-infected macrophages compared to non-infected cells. For this, a quantitative proteomic approach using stable isotope labelling by amino acids in cell culture (SILAC) was employed, followed by purification of host Ago-complexes using a short TNRC6 protein-derived peptide fused to glutathione S-transferase beads as an affinity matrix. Proteomic-based detailed biochemical analysis revealed Leishmania modulated host macrophage RISC composition during infection. This analysis identified 51 Ago-interacting proteins with a broad range of biological activities. Strikingly, Leishmania proteins were detected as part of host Ago-containing complexes in infected cells. Our results present the first report of comprehensive quantitative proteomics of Ago-containing complexes isolated from Leishmania-infected macrophages and suggest targeting the effector complex of host RNAi machinery. Additionally, these results expand knowledge of RISC in the context of host-pathogen interactions in parasitology in general.


Assuntos
Proteínas Argonautas , Macrófagos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Humanos , Macrófagos/parasitologia , Macrófagos/metabolismo , Proteômica/métodos , Leishmania/metabolismo , Interferência de RNA , Leishmaniose/parasitologia , Leishmaniose/metabolismo
2.
Front Immunol ; 14: 1287539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098491

RESUMO

Leishmania donovani, an intracellular protozoan parasite, is the causative agent of visceral leishmaniasis, the most severe form of leishmaniasis in humans. It is becoming increasingly clear that several intracellular pathogens target host cell RNA interference (RNAi) pathways to promote their survival. Complexes of Argonaute proteins with small RNAs are core components of the RNAi. In this study, we investigated the potential role of host macrophage Argonautes in Leishmania pathogenesis. Using Western blot analysis of Leishmania donovani-infected macrophages, we show here that Leishmania infection selectively increased the abundance of host Argonaute 1 (Ago1). This increased abundance of Ago1 in infected cells also resulted in higher levels of Ago1 in active Ago-complexes, suggesting the preferred use of Ago1 in RNAi in Leishmania-infected cells. This analysis used a short trinucleotide repeat containing 6 (TNRC6)/glycine-tryptophan repeat protein (GW182) protein-derived peptide fused to Glutathione S-transferase as an affinity matrix to capture mature Ago-small RNAs complexes from the cytosol of non-infected and Leishmania-infected cells. Furthermore, Ago1 silencing significantly reduced intracellular survival of Leishmania, demonstrating that Ago1 is essential for Leishmania pathogenesis. To investigate the role of host Ago1 in Leishmania pathogenesis, a quantitative whole proteome approach was employed, which showed that expression of several previously reported Leishmania pathogenesis-related proteins was dependent on the level of macrophage Ago1. Together, these findings identify Ago1 as the preferred Argonaute of RNAi machinery in infected cells and a novel and essential virulence factor by proxy that promotes Leishmania survival.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Leishmaniose , Humanos , Proteômica/métodos , Leishmaniose/metabolismo , Macrófagos/metabolismo , Leishmaniose Visceral/parasitologia , Leishmania donovani/fisiologia
3.
PLoS One ; 18(4): e0284026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37027358

RESUMO

Recently, autophagy has been implicated as a host defense mechanism against intracellular pathogens. On the other hand, certain intracellular pathogens such as Leishmania can manipulate the host's autophagy to promote their survival. Our recent findings regarding the regulation of autophagy by Leishmania donovani indicate that this pathogen induces non-classical autophagy in infected macrophages, independent of regulation by the mammalian target of rapamycin complex 1. This suggests the fine-tuning of autophagy to optimally promote parasite survival, possibly by the sequestration or modulation of specific autophagosome-associated proteins. To investigate how Leishmania potentially manipulates the composition of host-cell autophagosomes, we undertook a quantitative proteomic study of the human monocytic cell line THP-1 following infection with L. donovani. We used stable isotope labeling by amino acid in cell culture and liquid chromatography-tandem mass spectrometry to compare expression profiles between autophagosomes isolated from THP-1 cells infected with L. donovani or treated with known autophagy inducers. Selected proteomic results were validated by Western blotting. In this study, we showed that L. donovani modulates the composition of macrophage autophagosomes during infection when compared to autophagosomes induced by either rapamycin (selective autophagy) or starvation (non-selective autophagy). Among 1787 proteins detected in Leishmania-induced autophagosomes, 146 were significantly modulated compared to the proteome of rapamycin-induced autophagosomes, while 57 were significantly modulated compared to starvation-induced autophagosomes. Strikingly, 23 Leishmania proteins were also detected in the proteome of Leishmania-induced autophagosomes. Together, our data provide the first comprehensive insight into the proteome dynamics of host autophagosomes in response to Leishmania infection and demonstrate the complex relations between the host and pathogen at the molecular level. A comprehensive analysis of the Leishmania-induced autophagosome proteome will be instrumental in the advancement of understanding leishmaniasis.


Assuntos
Leishmania donovani , Leishmaniose , Humanos , Autofagossomos , Proteoma/metabolismo , Proteômica/métodos , Macrófagos/metabolismo , Leishmania donovani/fisiologia , Sirolimo
4.
J Leukoc Biol ; 109(5): 999-1007, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33211335

RESUMO

Parasites of Leishmania genus have developed sophisticated strategies allowing them to deactivate their host macrophage to promote their survival. It has become clear that miRNAs play important roles in shaping innate and adaptive immune responses toward pathogens. It is not surprising that several pathogens including Leishmania have evolved the ability to regulate host macrophage miRNA expression in order to manipulate host cell phenotypes to their advantage. However, very little is known about the mechanisms used by intracellular pathogens to drive changes in host cell miRNA abundance. In this review, Leishmania exploitation of macrophage transcription factor c-Myc as a critical proxy virulence factor to regulate abundance of macrophage miRNAs influencing macrophage physiology to promote its survival will be discussed.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Parasita/genética , Leishmania/fisiologia , Macrófagos/metabolismo , Macrófagos/parasitologia , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Humanos , MicroRNAs/metabolismo
5.
PLoS One ; 13(11): e0206920, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30399177

RESUMO

Leishmaniasis is amongst the most important neglected diseases, afflicting more than 12 million people in 88 countries. There is an urgent need for safe orally bioavailable and cost-effective drugs for the treatment of leishmaniasis. It has recently been shown that Leishmania activates host macrophage serine/threonine kinase Akt, to promote survival of both parasites and infected cells. Here, we sought to evaluate a compound, Miransertib (ARQ 092), an orally bioavailable and selective allosteric Akt inhibitor currently in clinical trials for patients with PI3K/Akt-driven tumors or Proteus syndrome. Miransertib was tested against Leishmania donovani and Leishmania amazonensis, causative agents of visceral and cutaneous leishmaniasis, respectively. Cultured promastigotes were susceptible to Miransertib. In addition, Miransertib was markedly effective against intracellular amastigotes of L. donovani or L. amazonensis-infected macrophages. Miransertib also enhanced mTOR dependent autophagy in Leishmania-infected macrophages, which may represent one mechanism of Miransertib-mediated killing of intracellular Leishmania. Whereas parasite clearance in the spleen of mice infected with L. donovani and treated with Miransertib was comparable to that when treated with miltefosine, Miransertib caused a greater reduction in the parasite load in the liver. In the cutaneous leishmaniasis infection model, lesions were reduced by 40% as compared to mock treated mice. Together, these results provide direct evidence to support the conclusion that Miransertib is an excellent lead compound for the development of a new oral drug therapy for visceral and cutaneous leishmaniasis.


Assuntos
Aminopiridinas/administração & dosagem , Imidazóis/administração & dosagem , Leishmania donovani/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Visceral/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Administração Oral , Animais , Humanos , Leishmania donovani/patogenicidade , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Carga Parasitária , Baço/efeitos dos fármacos , Baço/parasitologia
6.
J Biol Chem ; 293(33): 12805-12819, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29934305

RESUMO

Leishmania species are intracellular protozoan pathogens that have evolved to successfully infect and deactivate host macrophages. How this deactivation is brought about is not completely understood. Recently, microRNAs (miRNAs) have emerged as ubiquitous regulators of macrophage gene expression that contribute to shaping the immune responses to intracellular pathogens. Conversely, several pathogens have evolved the ability to exploit host miRNA expression to manipulate host-cell phenotype. However, very little is known about the mechanisms used by intracellular pathogens to drive changes in host-cell miRNA abundance. Using miRNA expression profiling of Leishmania donovani-infected human macrophages, we show here that Leishmania infection induced a genome-wide down-regulation of host miRNAs. This repression occurred at the level of miRNA gene transcription, because the synthesis rates of primary miRNAs were significantly decreased in infected cells. miRNA repression depended on the host macrophage transcription factor c-Myc. Indeed, the expression of host c-Myc was markedly up-regulated by Leishmania infection, and c-Myc silencing reversed the miRNA suppression. Furthermore, c-Myc silencing significantly reduced intracellular survival of Leishmania, demonstrating that c-Myc is essential for Leishmania pathogenesis. Taken together, these findings identify c-Myc not only as being responsible for miRNA repression in Leishmania-infected macrophages but also as a novel and essential virulence factor by proxy that promotes Leishmania survival.


Assuntos
Leishmania donovani , Leishmaniose Visceral/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Virulência/metabolismo , Humanos , Leishmania donovani/metabolismo , Leishmania donovani/patogenicidade , Leishmaniose Visceral/patologia , Macrófagos/parasitologia , Macrófagos/patologia
7.
J Biol Chem ; 293(7): 2617-2630, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29269416

RESUMO

Autophagy is essential for cell survival under stress and has also been implicated in host defense. Here, we investigated the interactions between Leishmania donovani, the main etiological agent of visceral leishmaniasis, and the autophagic machinery of human macrophages. Our results revealed that during early infection-and via activation of the Akt pathway-Leishmania actively inhibits the induction of autophagy. However, by 24 h, Leishmania switched from being an inhibitor to an overall inducer of autophagy. These findings of a dynamic, biphasic response were based on the accumulation of lipidated light chain 3 (LC3), an autophagosome marker, by Western blotting and confocal fluorescence microscopy. We also present evidence that Leishmania induces delayed host cell autophagy via a mechanism independent of reduced activity of the mechanistic target of rapamycin (mTOR). Notably, Leishmania actively inhibited mTOR-regulated autophagy even at later stages of infection, whereas there was a clear induction of autophagy via some other mechanism. In this context, we examined host inositol monophosphatase (IMPase), reduced levels of which have been implicated in mTOR-independent autophagy, and we found that IMPase activity is significantly decreased in infected cells. These findings indicate that Leishmania uses an alternative pathway to mTOR to induce autophagy in host macrophages. Finally, RNAi-mediated down-regulation of host autophagy protein 5 (ATG5) or autophagy protein 9A (ATG9A) decreased parasite loads, demonstrating that autophagy is essential for Leishmania survival. We conclude that Leishmania uses an alternative pathway to induce host autophagy while simultaneously inhibiting mTOR-regulated autophagy to fine-tune the timing and magnitude of this process and to optimize parasite survival.


Assuntos
Autofagia , Interações Hospedeiro-Parasita , Leishmania donovani/crescimento & desenvolvimento , Leishmaniose Visceral/fisiopatologia , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Humanos , Leishmania donovani/genética , Leishmania donovani/fisiologia , Leishmaniose Visceral/genética , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
8.
Med Microbiol Immunol ; 206(3): 235-257, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28283754

RESUMO

Protozoa of the genus Leishmania infect macrophages in their mammalian hosts causing a spectrum of diseases known as the leishmaniases. The search for leishmania effectors that support macrophage infection is a focus of significant interest. One such candidate is leishmania chaperonin 10 (CPN10) which is secreted in exosomes and may have immunosuppressive properties. Here, we report for the first time that leishmania CPN10 localizes to the cytosol of infected macrophages. Next, we generated two genetically modified strains of Leishmania donovani (Ld): one strain overexpressing CPN10 (CPN10+++) and the second, a CPN10 single allele knockdown (CPN10+/-), as the null mutant was lethal. When compared with the wild-type (WT) parental strain, CPN10+/- Ld showed higher infection rates and parasite loads in human macrophages after 24 h of infection. Conversely, CPN10+++ Ld was associated with lower initial infection rates. This unexpected apparent gain-of-function for the knockdown could have been explained either by enhanced parasite internalization or by enhanced intracellular survival. Paradoxically, we found that CPN10+/- leishmania were more readily internalized than WT Ld, but also displayed significantly impaired intracellular survival. This suggests that leishmania CPN10 negatively regulates the rate of parasite uptake by macrophages while being required for intracellular survival. Finally, quantitative proteomics identified an array of leishmania proteins whose expression was positively regulated by CPN10. In contrast, many macrophage proteins involved in innate immunity were negatively regulated by CPN10. Taken together, these findings identify leishmania CPN10 as a novel effector with broad based effects on macrophage cell regulation and parasite survival.


Assuntos
Chaperonina 10/metabolismo , Endocitose , Interações Hospedeiro-Patógeno , Leishmania donovani/fisiologia , Macrófagos/parasitologia , Fatores de Virulência/metabolismo , Sobrevivência Celular , Células Cultivadas , Chaperonina 10/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Leishmania donovani/genética , Leishmania donovani/patogenicidade , Proteômica , Proteínas de Protozoários/análise , Fatores de Virulência/genética
9.
PLoS Negl Trop Dis ; 10(8): e0004907, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27560160

RESUMO

BACKGROUND: Talaromyces marneffei is an opportunistic dimorphic fungus prevalent in Southeast Asia. We previously demonstrated that Mp1p is an immunogenic surface and secretory mannoprotein of T. marneffei. Since Mp1p is a surface protein that can generate protective immunity, we hypothesized that Mp1p and/or its homologs are virulence factors. METHODOLOGY/PRINCIPAL FINDINGS: We examined the pathogenic roles of Mp1p and its homologs in a mouse model. All mice died 21 and 30 days after challenge with wild-type T. marneffei PM1 and MP1 complemented mutant respectively. None of the mice died 60 days after challenge with MP1 knockout mutant (P<0.0001). Seventy percent of mice died 60 days after challenge with MP1 knockdown mutant (P<0.0001). All mice died after challenge with MPLP1 to MPLP13 knockdown mutants, suggesting that only Mp1p plays a significant role in virulence. The mean fungal loads of PM1 and MP1 complemented mutant in the liver, lung, kidney and spleen were significantly higher than those of the MP1 knockout mutant. Similarly, the mean load of PM1 in the liver, lung and spleen were significantly higher than that of the MP1 knockdown mutant. Histopathological studies showed an abundance of yeast in the kidney, spleen, liver and lung with more marked hepatic and splenic necrosis in mice challenged with PM1 compared to MP1 knockout and MP1 knockdown mutants. Likewise, a higher abundance of yeast was observed in the liver and spleen of mice challenged with MP1 complemented mutant compared to MP1 knockout mutant. PM1 and MP1 complemented mutant survived significantly better than MP1 knockout mutant in macrophages at 48 hours (P<0.01) post-infection. The mean fungal counts of Pichia pastoris GS115-MP1 in the liver (P<0.001) and spleen (P<0.05) of mice were significantly higher than those of GS115 at 24 hours post-challenge. CONCLUSIONS/SIGNIFICANCE: Mp1p is a key virulence factor of T. marneffei. Mp1p mediates virulence by improving the survival of T. marneffei in macrophages.


Assuntos
Macrófagos/microbiologia , Glicoproteínas de Membrana/imunologia , Talaromyces/patogenicidade , Fatores de Virulência/imunologia , Fatores de Virulência/isolamento & purificação , Animais , Antígenos de Fungos/genética , Antígenos de Fungos/imunologia , Técnicas de Silenciamento de Genes , Humanos , Rim/microbiologia , Fígado/microbiologia , Fígado/patologia , Pulmão/microbiologia , Glicoproteínas de Membrana/genética , Camundongos , Mutação , Micoses/imunologia , Pichia/crescimento & desenvolvimento , Pichia/fisiologia , Baço/microbiologia , Baço/patologia , Talaromyces/genética , Talaromyces/crescimento & desenvolvimento , Fatores de Virulência/genética
10.
J Eukaryot Microbiol ; 63(6): 823-833, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27216143

RESUMO

Protozoan parasites of the genus Leishmania adapt to their arthropod and vertebrate hosts through the development of defined life cycle stages. Stage differentiation is triggered by environmental stress factors and has been linked to parasite chaperone activities. Using a null mutant approach we previously revealed important, nonredundant functions of the cochaperone cyclophilin 40 in L. donovani-infected macrophages. Here, we characterized in more detail the virulence defect of cyp40-/- null mutants. In vitro viability assays, infection tests using macrophages, and mixed infection experiments ruled out a defect of cyp40-/- parasites in resistance to oxidative and hydrolytic stresses encountered inside the host cell phagolysosome. Investigation of the CyP40-dependent proteome by quantitative 2D-DiGE analysis revealed up regulation of various stress proteins in the null mutant, presumably a response to compensate for the lack of CyP40. Applying transmission electron microscopy we showed accumulation of vesicular structures in the flagellar pocket of cyp40-/- parasites that we related to a significant increase in exosome production, a phenomenon previously linked to the parasite stress response. Together these data suggest that cyp40-/- parasites experience important intrinsic homeostatic stress that likely abrogates parasite viability during intracellular infection.


Assuntos
Ciclofilinas/deficiência , Leishmania donovani/enzimologia , Leishmaniose Visceral/parasitologia , Proteínas de Protozoários/genética , Animais , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Eletroforese em Gel Bidimensional , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Leishmania donovani/genética , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Proteínas de Protozoários/metabolismo
11.
Phytomedicine ; 20(7): 611-4, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23541215

RESUMO

Increasing prevalence of methicillin-resistant Staphylococcus aureus (MRSA) worldwide with limited therapeutic options is a growing public health concern. Natural products have been shown to possess antibacterial actions against MRSA. Flavonoids from natural products have been shown to possess antibacterial actions against MRSA by antagonizing its resistance mechanisms. Diosmin and diosmetin are natural flavonoids found in a variety of citrus fruits. The aim of this study was to investigate whether diosmin and diosmetin could inhibit the growth of MRSA and the in vitro enzymatic activity of a newly discovered MRSA drug target, pyruvate kinase (PK). By using a panel of MRSA strains with known resistant mechanisms, neither diosmin nor diosmetin was shown to possess direct antibacterial activities against all tested MRSA strains. However, in checkerboard assay, we found that diosmetin together with erythromycin, could synergistically inhibit the growth of ABC-pump overexpressed MRSA-RN4220/pUL5054, and time kill assay also showed that the antibacterial activities of diosmetin with erythromycin were bactericidal. Diosmetin was further shown to significantly suppress the MRSA PK activities in a dose dependent manner. In conclusion, the inhibition of MRSA PK by diosmetin could lead to a deficiency of ATP and affect the bacterial efflux pump which might contribute to the antibacterial actions of diosmetin against MRSA.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/farmacologia , Eritromicina/farmacologia , Flavonoides/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Piruvato Quinase/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Diosmina/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana
12.
Future Microbiol ; 8(3): 403-11, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23464375

RESUMO

AIM: Infections associated with medical devices are an important cause of morbidity and mortality. Microorganisms are responsible for catheter infections that may then result in the local or systemic dissemination of the microorganism into the bloodstream. The aim of this study was to evaluate the antimicrobial activity of silver nanoparticles (AgNPs) embedded in polyurethane plastics, commonly used for catheter fabrication. MATERIALS & METHODS: AgNPs in the range of 25-30 nm were synthesized and embedded in polyurethane plastics at different concentrations. The antimicrobial activities of these plastics were tested against the three pathogenic microorganisms, Escherichia coli, Staphylococcus epidermidis and Candida albicans, frequently associated with catheter infections. The cytotoxicity of the plastics was evaluated on human-derived macrophages using propidium iodide and the secretion of the pro- and anti-inflammatory cytokines IL-6, IL-10 and TNF-a was measured using ELISA. RESULTS: A significant reduction of 6- to 7-log in the number of bacteria was measured, while a reduction of 90% was measured in the case of C. albicans. Neither cytotoxic effect on macrophages nor immunological response was observed. CONCLUSION: Plastics embedded with AgNPs have great potential to limit microbial colonization of implanted medical devices.


Assuntos
Anti-Infecciosos/farmacologia , Nanopartículas/toxicidade , Poliuretanos/farmacologia , Poliuretanos/toxicidade , Prata/farmacologia , Prata/toxicidade , Apoptose , Candida albicans/efeitos dos fármacos , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Escherichia coli/efeitos dos fármacos , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus epidermidis/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
13.
Cell Microbiol ; 15(5): 795-808, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23167250

RESUMO

Using a genetic screen in yeast we found that Mycobacterium tuberculosis PE-PGRS62 was capable of disrupting yeast vacuolar protein sorting, suggesting effects on endosomal trafficking. To study the impact of PE-PGRS62 on macrophage function, we infected murine macrophages with Mycobacterium smegmatis expressing PE-PGRS62. Infected cells displayed phagosome maturation arrest. Phagosomes acquired Rab5, but displayed a significant defect in Rab7 and LAMP-1 acquisition. Macrophages infected with M. smegmatis expressing PE-PGRS62 also expressed two- to threefold less iNOS protein when compared with cells infected with wild-type bacteria. Consistent with this, cells infected with a Mycobacterium marinum transposon mutant for the PE-PGRS62 orthologue showed greater iNOS protein expression when compared to cells infected with wild-type organisms. Complementation restored the ability of the mutant to inhibit iNOS expression. No differences in iNOS transcript levels were observed, suggesting that PE-PGRS62 effects on iNOS expression occurred post-transcriptionally. Marked differences in colony morphology were also seen in M. smegmatis expressing PE-PGRS62 and in the M. marinum transposon mutant, suggesting that PE-PGRS62 may affect cell wall composition. These findings suggest that PE-PGRS62 supports virulence via inhibition of phagosome maturation and iNOS expression, and these phenotypes may be linked to effects on bacterial cell wall composition.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Macrófagos/metabolismo , Mycobacterium tuberculosis/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/patogenicidade , Mycobacterium tuberculosis/patogenicidade , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Fagossomos/metabolismo , Fagossomos/microbiologia
14.
PLoS One ; 7(8): e43668, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22928013

RESUMO

Of the various phosphatidylinositol 3- kinases (PI3Ks), only the class III enzyme Vps34 has been shown to regulate phagosome maturation. During studies of phagosome maturation in THP-1 cells deficient in class IA PI3K p110α, we discovered that this PI3K isoform is required for vacuole maturation to progress beyond acquisition of Rab7 leading to delivery of lysosomal markers. Bead phagosomes from THP-1 cells acquired p110α and contained PI3P and PI(3,4,5)P3; however, p110α and PI(3,4,5)P3 levels in phagosomes from p110α knockdown cells were decreased. Phagosomes from p110α knock down cells showed normal acquisition of both Rab5 and EEA-1, but were markedly deficient in the lysosomal markers LAMP-1 and LAMP-2, and the lysosomal hydrolase, ß-galactosidase. Phagosomes from p110α deficient cells also displayed impaired fusion with Texas Red dextran-loaded lysosomes. Despite lacking lysosomal components, phagosomes from p110α deficient cells recruited normal levels of Rab7, Rab-interacting lysosomal protein (RILP) and homotypic vacuole fusion and protein sorting (HOPs) components Vps41 and Vps16. The latter observations demonstrated that phagosomal Rab7 was active and capable of recruiting effectors involved in membrane fusion. Nevertheless, active Rab7 was not sufficient to bring about the delivery of lysosomal proteins to the maturing vacuole, which is shown for the first time to be dependent on a class I PI3K.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Fagossomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Classe Ia de Fosfatidilinositol 3-Quinase/deficiência , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Técnicas de Silenciamento de Genes , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Fagossomos/enzimologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Transporte Vesicular/metabolismo , beta-Galactosidase/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
15.
J Leukoc Biol ; 91(6): 887-99, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22442494

RESUMO

Evasion or subversion of host immune responses is a well-established paradigm in infection with visceralizing leishmania. In this review, we summarize current findings supporting a model in which leishmania target host regulatory molecules and pathways, such as the PTP SHP-1 and the PI3K/Akt signaling cascade, to prevent effective macrophage activation. Furthermore, we describe how virulence factors, secreted by leishmania, interfere with macrophage intracellular signaling. Finally, we discuss mechanisms of secretion and provide evidence that leishmania use a remarkably adept, exosome-based secretion mechanism to export and deliver effector molecules to host cells. In addition to representing a novel mechanism for trafficking of virulence factors across membranes, recent findings indicate that leishmania exosomes may have potential as vaccine candidates.


Assuntos
Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Proteínas de Protozoários/imunologia , Transdução de Sinais/imunologia , Fatores de Virulência/imunologia , Animais , Humanos , Leishmania donovani/metabolismo , Leishmaniose Visceral/metabolismo , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Protozoários/metabolismo , Fatores de Virulência/metabolismo
17.
Nanomedicine ; 8(3): 328-36, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21718674

RESUMO

The incorporation of nanoparticles (NPs) in industrial and biomedical applications has increased significantly in recent years, yet their hazardous and toxic effects have not been studied extensively. Here, we studied the effects of 24 nm silver NPs (AgNPs) on a panel of bacteria isolated from medical devices used in a hospital intensive care unit. The cytotoxic effects were evaluated in macrophages and the expression of the inflammatory cytokines IL-6, IL-10 and TNF-α were quantified. The effects of NPs on coagulation were tested in vitro in plasma-based assays. We demonstrated that 24 nm AgNPs were effective in suppressing the growth of clinically relevant bacteria with moderate to high levels of antibiotic resistance. The NPs had a moderate inhibitory effect when coagulation was initiated through the intrinsic pathway. However, these NPs are cytotoxic to macrophages and are able to elicit an inflammatory response. Thus, beneficial and potential harmful effects of 24 nm AgNPs on biomedical devices must be weighed in further studies in vivo. From the Clinical Editor: The authors of this study demonstrate that gallic acid reduced 24 nm Ag NPs are effective in suppressing growth of clinically relevant antibiotic resistant bacteria. However, these NPs also exhibit cytotoxic properties to macrophages and may trigger an inflammatory response. Thus, the balance of beneficial and potential harmful effects must be weighed carefully in further studies.


Assuntos
Antibacterianos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Inflamação/patologia , Nanopartículas Metálicas/toxicidade , Prata/farmacologia , Prata/toxicidade , Bactérias/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Luz , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Espalhamento de Radiação
18.
J Immunol ; 188(1): 367-78, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22140263

RESUMO

Leishmania disease expression has been linked to IL-10. In this study, we investigated the regulation of IL-10 production by macrophages infected with Leishmania donovani. Infection of either murine or human macrophages brought about selective phosphorylation of Akt-2 in a PI3K-dependent manner. These events were linked to phosphorylation and inactivation of glycogen synthase kinase-3ß (GSK-3ß) at serine 9, as the latter was abrogated by inhibition of either PI3K or Akt. One of the transcription factors that is negatively regulated by GSK-3ß is CREB, which itself positively regulates IL-10 expression. Infection of macrophages with leishmania induced phosphorylation of CREB at serine 133, and this was associated with enhanced CREB DNA binding activity and induction of IL-10. Similar to phosphorylation of GSK-3ß, both phosphorylation of CREB at serine 133 and CREB DNA binding activity were abrogated in cells treated with inhibitors of either PI3K or Akt prior to infection. Furthermore, disruption of this pathway either by inhibition of Akt or by overexpression of GSK-3ß markedly attenuated IL-10 production in response to leishmania. Thus, GSK-3ß negatively regulates myeloid cell IL-10 production in response to leishmania. Switching off GSK-3ß promotes disease pathogenesis.


Assuntos
Regulação para Baixo/imunologia , Quinase 3 da Glicogênio Sintase/imunologia , Interleucina-10/imunologia , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Animais , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/imunologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ativação Enzimática/imunologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Interleucina-10/biossíntese , Leishmania donovani/metabolismo , Leishmaniose Visceral/metabolismo , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
19.
J Cell Sci ; 123(Pt 6): 842-52, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20159964

RESUMO

Specialized secretion systems are used by numerous bacterial pathogens to export virulence factors into host target cells. Leishmania and other eukaryotic intracellular pathogens also deliver effector proteins into host cells; however, the mechanisms involved have remained elusive. In this report, we identify exosome-based secretion as a general mechanism for protein secretion by Leishmania, and show that exosomes are involved in the delivery of proteins into host target cells. Comparative quantitative proteomics unambiguously identified 329 proteins in Leishmania exosomes, accounting for >52% of global protein secretion from these organisms. Our findings demonstrate that infection-like stressors (37 degrees C +/- pH 5.5) upregulated exosome release more than twofold and also modified exosome protein composition. Leishmania exosomes and exosomal proteins were detected in the cytosolic compartment of infected macrophages and incubation of macrophages with exosomes selectively induced secretion of IL-8, but not TNF-alpha. We thus provide evidence for an apparently broad-based mechanism of protein export by Leishmania. Moreover, we describe a mechanism for the direct delivery of Leishmania molecules into macrophages. These findings suggest that, like mammalian exosomes, Leishmania exosomes function in long-range communication and immune modulation.


Assuntos
Comunicação Celular , Exossomos/metabolismo , Leishmania donovani/citologia , Leishmania donovani/metabolismo , Macrófagos/parasitologia , Proteínas de Protozoários/metabolismo , Via Secretória , Animais , Biomarcadores/metabolismo , Meios de Cultivo Condicionados/metabolismo , Exossomos/ultraestrutura , Espaço Extracelular/metabolismo , Resposta ao Choque Térmico , Concentração de Íons de Hidrogênio , Interleucina-8/metabolismo , Leishmania donovani/patogenicidade , Leishmania donovani/ultraestrutura , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Modelos Biológicos , Transporte Proteico , Proteômica , Temperatura , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA