Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS One ; 18(9): e0291029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751459

RESUMO

Neurodegenerative diseases encompass a group of debilitating conditions resulting from progressive nerve cell death. Of these, Alzheimer's disease (AD) occurs most frequently, but is currently incurable and has limited treatment success. Late onset AD, the most common form, is highly heritable but is caused by a combination of non-genetic risk factors and many low-effect genetic variants whose disease-causing mechanisms remain unclear. By mining the FinnGen study database of phenome-wide association studies, we identified a rare variant, rs148726219, enriched in the Finnish population that is associated with AD risk and dementia, and appears to have arisen on a common haplotype with older AD-associated variants such as rs429358. The rs148726219 variant lies in an overlapping intron of the FosB proto-oncogene (FOSB) and ERCC excision repair 1 (ERCC1) genes. To understand the impact of this SNP on disease phenotypes, we performed CRISPR/Cas9 editing in a human induced pluripotent stem cell (hiPSC) line to generate isogenic clones harboring heterozygous and homozygous alleles of rs148726219. hiPSC clones differentiated into induced excitatory neurons (iNs) did not exhibit detectable molecular or morphological variation in differentiation potential compared to isogenic controls. However, global transcriptome analysis showed differential regulation of nearby genes and upregulation of several biological pathways related to neuronal function, particularly synaptogenesis and calcium signaling, specifically in mature iNs harboring rs148726219 homozygous and heterozygous alleles. Functional differences in iN circuit maturation as measured by calcium imaging were observed across genotypes. Edited mature iNs also displayed downregulation of unfolded protein response and cell death pathways. This study implicates a phenotypic impact of rs148726219 in the context of mature neurons, consistent with its identification in late onset AD, and underscores a hiPSC-based experimental model to functionalize GWAS-identified variants.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Alzheimer/metabolismo , Polimorfismo de Nucleotídeo Único , Genótipo , Neurônios
2.
Glia ; 71(4): 974-990, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36480007

RESUMO

Triggering receptor on myeloid cells 2 (TREM2) is an innate immune receptor, upregulated on the surface of microglia associated with amyloid plaques in Alzheimer's disease (AD). Individuals heterozygous for the R47H variant of TREM2 have greatly increased risk of developing AD. We examined the effects of wild-type (WT), R47H and knock-out (KO) of human TREM2 expression in three microglial cell systems. Addition of mouse BV-2 microglia expressing R47H TREM2 to primary mouse neuronal cultures caused neuronal loss, not observed with WT TREM2. Neuronal loss was prevented by using annexin V to block exposed phosphatidylserine, an eat-me signal and ligand of TREM2, suggesting loss was mediated by microglial phagocytosis of neurons exposing phosphatidylserine. Addition of human CHME-3 microglia expressing R47H TREM2 to LUHMES neuronal-like cells also caused loss compared to WT TREM2. Expression of R47H TREM2 in BV-2 and CHME-3 microglia increased their uptake of phosphatidylserine-beads and synaptosomes versus WT TREM2. Human iPSC-derived microglia with heterozygous R47H TREM2 had increased phagocytosis of synaptosomes vs common-variant TREM2. Additionally, phosphatidylserine liposomes increased activation of human iPSC-derived microglia expressing homozygous R47H TREM2 versus common-variant TREM2. Finally, overexpression of TREM2 in CHME-3 microglia caused increased expression of cystatin F, a cysteine protease inhibitor, and knock-down of cystatin F increased CHME-3 uptake of phosphatidylserine-beads. Together, these data suggest that R47H TREM2 may increase AD risk by increasing phagocytosis of synapses and neurons via greater activation by phosphatidylserine and that WT TREM2 may decrease microglial phagocytosis of synapses and neurons via cystatin F.


Assuntos
Doença de Alzheimer , Sinaptossomos , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Cistatinas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Neurônios/patologia , Fagocitose/genética , Fosfatidilserinas/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Sinaptossomos/metabolismo , Sinaptossomos/patologia
4.
Hum Mol Genet ; 28(17): 2835-2850, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31108504

RESUMO

The fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) is characterized by a profound loss of motor neurons (MNs). Until now only riluzole minimally extends life expectancy in ALS, presumably by inhibiting glutamatergic neurotransmission and calcium overload of MNs. Therefore, the aim of this study was to investigate the glutamate receptor properties and key aspects of intracellular calcium dynamics in induced pluripotent stem cell (iPSC)-derived MNs from ALS patients with C9orf72 (n = 4 cell lines), fused in sarcoma (FUS) (n = 9), superoxide dismutase 1 (SOD1) (n = 3) or transactive response DNA-binding protein 43 (TDP43) (n = 3) mutations as well as healthy (n = 7 cell lines) and isogenic controls (n = 3). Using calcium imaging, we most frequently observed spontaneous transients in mutant C9orf72 MNs. Basal intracellular calcium levels and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-induced signal amplitudes were elevated in mutant TDP43 MNs. Besides, a majority of mutant TDP43 MNs responded to 3.5-dihydroxyphenylglycine as metabotropic glutamate receptor agonist. Quantitative real-time PCR demonstrated significantly increased expression levels of AMPA and kainate receptors in mutant FUS cells compared to healthy and isogenic controls. Furthermore, the expression of kainate receptors and voltage gated calcium channels in mutant C9orf72 MNs as well as metabotropic glutamate receptors in mutant SOD1 cells was markedly elevated compared to controls. Our data of iPSC-derived MNs from familial ALS patients revealed several mutation-specific alterations in glutamate receptor properties and calcium dynamics that could play a role in ALS pathogenesis and may lead to future translational strategies with individual stratification of neuroprotective ALS treatments.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Mutação , Receptores de Glutamato/metabolismo , Esclerose Lateral Amiotrófica/diagnóstico , Biomarcadores , Proteína C9orf72/genética , Sinalização do Cálcio , Proteínas de Ligação a DNA/genética , Suscetibilidade a Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase-1/genética
5.
Vox Sang ; 114(3): 275-282, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30873634

RESUMO

BACKGROUND AND OBJECTIVES: Mobilization of CD34+ cells by stimulation with G-CSF shows considerable variation across stem cell donors. Upfront prediction of CD34+ cell counts in peripheral blood based on easily available steady-state parameters would be helpful for the planning of apheresis and stem cell transplantation. Commonly accepted steady-state predictors for the mobilization are gender, body mass index and platelet count. The aim of the study was the identification of novel predictors that might influence mobilization efficacy and to create a model for the prediction of stem cell mobilization. METHODS: A total of 333 healthy stem cell donors who donated peripheral stem cells in our institution were retrospectively analysed. All available data before stem cell mobilization with G-CSF were included in the database. Primary end-point was CD34+ cell count before the first apheresis. RESULTS: In this cohort cholinesterase, differential blood cell counts including platelets, gender and body mass index were significantly correlated with CD34+ cell count. G-CSF dose per lean body weight showed a significant correlation with mobilization efficacy in women but not in men. A multivariate analysis identified gender, cholinesterase and platelet and red cell count as main predictors of mobilization. Red cell count showed a strong gender dependence, with higher predictive value in females. CONCLUSION: The counts of eosinophils, platelets, red cells, cholinesterase and gender are the most important predictors of CD34+ cell mobilization in our deduced models. The red cell count as a predictor for mobilization showed a differential gender dependence.


Assuntos
Mobilização de Células-Tronco Hematopoéticas/normas , Células-Tronco de Sangue Periférico/metabolismo , Adulto , Antígenos CD34/metabolismo , Colinesterases/metabolismo , Contagem de Eritrócitos , Feminino , Fator Estimulador de Colônias de Granulócitos/metabolismo , Mobilização de Células-Tronco Hematopoéticas/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco de Sangue Periférico/citologia , Contagem de Plaquetas , Fatores Sexuais , Doadores de Tecidos/estatística & dados numéricos
6.
Cell Chem Biol ; 25(4): 357-369.e6, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29396292

RESUMO

Aberrant hedgehog (Hh) signaling contributes to the pathogenesis of multiple cancers. Available inhibitors target Smoothened (Smo), which can acquire mutations causing drug resistance. Thus, compounds that inhibit Hh signaling downstream of Smo are urgently needed. We identified dynarrestin, a novel inhibitor of cytoplasmic dyneins 1 and 2. Dynarrestin acts reversibly to inhibit cytoplasmic dynein 1-dependent microtubule binding and motility in vitro without affecting ATP hydrolysis. It rapidly and reversibly inhibits endosome movement in living cells and perturbs mitosis by inducing spindle misorientation and pseudoprometaphase delay. Dynarrestin reversibly inhibits cytoplasmic dynein 2-dependent intraflagellar transport (IFT) of the cargo IFT88 and flux of Smo within cilia without interfering with ciliogenesis and suppresses Hh-dependent proliferation of neuronal precursors and tumor cells. As such, dynarrestin is a valuable tool for probing cytoplasmic dynein-dependent cellular processes and a promising compound for medicinal chemistry programs aimed at development of anti-cancer drugs.


Assuntos
Dineínas do Citoplasma/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cílios/efeitos dos fármacos , Cílios/metabolismo , Dineínas do Citoplasma/metabolismo , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Mitose/efeitos dos fármacos , Células NIH 3T3 , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Nat Commun ; 9(1): 335, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362359

RESUMO

Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease. Cytoplasmic fused in sarcoma (FUS) aggregates are pathological hallmarks of FUS-ALS. Proper shuttling between the nucleus and cytoplasm is essential for physiological cell function. However, the initial event in the pathophysiology of FUS-ALS remains enigmatic. Using human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs), we show that impairment of poly(ADP-ribose) polymerase (PARP)-dependent DNA damage response (DDR) signaling due to mutations in the FUS nuclear localization sequence (NLS) induces additional cytoplasmic FUS mislocalization which in turn results in neurodegeneration and FUS aggregate formation. Our work suggests that a key pathophysiologic event in ALS is upstream of aggregate formation. Targeting DDR signaling could lead to novel therapeutic routes for ameliorating ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Dano ao DNA , Neurônios Motores/metabolismo , Mutação , Agregação Patológica de Proteínas/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Transporte Ativo do Núcleo Celular/genética , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Diferenciação Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Feminino , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Pessoa de Meia-Idade , Neurônios Motores/patologia , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Proteína FUS de Ligação a RNA/genética , Transdução de Sinais
8.
Stem Cell Reports ; 10(2): 375-389, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29358088

RESUMO

Perturbations in stress granule (SG) dynamics may be at the core of amyotrophic lateral sclerosis (ALS). Since SGs are membraneless compartments, modeling their dynamics in human motor neurons has been challenging, thus hindering the identification of effective therapeutics. Here, we report the generation of isogenic induced pluripotent stem cells carrying wild-type and P525L FUS-eGFP. We demonstrate that FUS-eGFP is recruited into SGs and that P525L profoundly alters their dynamics. With a screening campaign, we demonstrate that PI3K/AKT/mTOR pathway inhibition increases autophagy and ameliorates SG phenotypes linked to P525L FUS by reducing FUS-eGFP recruitment into SGs. Using a Drosophila model of FUS-ALS, we corroborate that induction of autophagy significantly increases survival. Finally, by screening clinically approved drugs for their ability to ameliorate FUS SG phenotypes, we identify a number of brain-penetrant anti-depressants and anti-psychotics that also induce autophagy. These drugs could be repurposed as potential ALS treatments.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Drosophila/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína FUS de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Antidepressivos/farmacologia , Antipiréticos/farmacologia , Autofagia/genética , Sistemas CRISPR-Cas , Drosophila , Avaliação Pré-Clínica de Medicamentos , Proteínas de Fluorescência Verde/genética , Humanos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
9.
Hum Mol Genet ; 26(9): 1694-1705, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334862

RESUMO

Although the zinc finger transcription factor Wt1 has been linked to female fertility, its precise role in this process has not yet been understood. We have sequenced the WT1 exons in a panel of patients with idiopathic infertility and have identified a missense mutation in WT1 in one patient out of eight. This mutation leads to an amino acid change within the zinc finger domain and results in reduced DNA binding. We utilized Wt1+/- mice as a model to mechanistically pinpoint the consequences of reduced Wt1 levels for female fertility. Our results indicate that subfertility in Wt1+/- female mice is a maternal effect caused by the Wt1-dependent de-regulation of Prss29, encoding a serine protease. Notably, blocking Prss29 activity was sufficient to rescue subfertility in Wt1+/- mice indicating Prss29 as a critical factor in female fertility. Molecularly, Wt1 represses expression of Prss29. De-repression and precocious expression of Prss29 in the oviduct of Wt1+/- mice interferes with pre-implantation development. Our study reveals a novel role for Wt1 in early mammalian development and identifies proteases as critical mediators of the maternal-embryonic interaction. Our data also suggest that the role of Wt1 in regulating fertility is conserved in mammals.


Assuntos
Infertilidade Feminina/genética , Proteínas WT1/genética , Proteínas WT1/metabolismo , Tumor de Wilms/genética , Tumor de Wilms/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Éxons , Feminino , Fertilidade/fisiologia , Humanos , Infertilidade Feminina/sangue , Infertilidade Feminina/metabolismo , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Oviductos/metabolismo , Oviductos/patologia , Fatores de Transcrição/genética , Dedos de Zinco
10.
PLoS One ; 11(11): e0165949, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812199

RESUMO

Mutations in Leucine-rich repeat kinase 2 (LRRK2) are strongly associated with familial Parkinson's disease (PD). High expression levels in immune cells suggest a role of LRRK2 in regulating the immune system. In this study, we investigated the effect of the LRRK2 (G2019S) mutation in monocytes, using a human stem cell-derived model expressing LRRK2 at endogenous levels. We discovered alterations in the differentiation pattern of LRRK2 mutant, compared to non-mutant isogenic controls, leading to accelerated monocyte production and a reduction in the non-classical CD14+CD16+ monocyte subpopulation in the LRRK2 mutant cells. LPS-treatment of the iPSC-derived monocytes significantly increased the release of pro-inflammatory cytokines, demonstrating a functional response without revealing any significant differences between the genotypes. Assessment of the migrational capacity of the differentiated monocytes revealed moderate deficits in LRRK2 mutant cells, compared to their respective controls. Our findings indicate a pivotal role of LRRK2 in hematopoietic fate decision, endorsing the involvement of the immune system in the development of PD.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Monócitos/citologia , Mutação , Diferenciação Celular/genética , Linhagem Celular , Humanos
11.
Transfusion ; 56(12): 3055-3064, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27633122

RESUMO

BACKGROUND: Biosimilar granulocyte-colony-stimulating factors (G-CSFs) have been available in the European Union since 2008, and Sandoz' biosimilar filgrastim was approved in the United States in March 2015 for all of the reference product's indications except acute radiation syndrome. Biosimilar G-CSFs have been largely embraced by the medical community, except for some reservations about healthy-donor stem cell mobilization, for which use outside of clinical studies was cautioned against by some members of the scientific community. STUDY DESIGN AND METHODS: In a two-center safety surveillance study (National Clinical Trial NCT01766934), 245 healthy volunteer stem cell donors were enrolled. Of 244 donors who began mobilization with twice-daily Sandoz biosimilar filgrastim, 242 received a full (n = 241) or partial (n = 1) course of G-CSF and underwent apheresis. Efficacy and safety were assessed and are reported here. RESULTS: Biosimilar filgrastim was accompanied by the typical G-CSF class-related adverse effects of expected frequency and severity. Median mobilization for CD34-positive stem cells was 97/µL (range, 20-347/µL); after one apheresis (91%) or two aphereses (9%) from all but three donors (1.2%), cell doses in excess of the typical 4 × 106 CD34-positive cells/kg of the recipient had been collected (range, 3-52 × 106 /kg). Biochemical and hematologic alterations were consistent with previous reports; all had normalized by the first follow-up 1 month after mobilization. Stem cell products engrafted with typical probability and kinetics for G-CSF-mobilized stem cell products. CONCLUSION: These data support the use of biosimilar filgrastim for healthy-donor stem cell mobilization as safe and effective.


Assuntos
Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Mobilização de Células-Tronco Hematopoéticas/métodos , Antígenos CD34/análise , Remoção de Componentes Sanguíneos , Monitoramento Epidemiológico , Filgrastim , Sobrevivência de Enxerto/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/efeitos adversos , Voluntários Saudáveis , Mobilização de Células-Tronco Hematopoéticas/normas , Humanos , Polietilenoglicóis , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/uso terapêutico , Doadores de Tecidos , Resultado do Tratamento
12.
Stem Cells ; 34(6): 1563-75, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26946488

RESUMO

Despite decades of research on amyotrophic lateral sclerosis (ALS), there is only one approved drug, which minimally extends patient survival. Here, we investigated pathophysiological mechanisms underlying ALS using motor neurons (MNs) differentiated from induced pluripotent stem cells (iPSCs) derived from ALS patients carrying mutations in FUS or SOD1. Patient-derived MNs were less active and excitable compared to healthy controls, due to reduced Na(+) /K(+) ratios in both ALS groups accompanied by elevated potassium channel (FUS) and attenuated sodium channel expression levels (FUS, SOD1). ALS iPSC-derived MNs showed elevated endoplasmic reticulum stress (ER) levels and increased caspase activation. Treatment with the FDA approved drug 4-Aminopyridine (4AP) restored ion-channel imbalances, increased neuronal activity levels and decreased ER stress and caspase activation. This study provides novel pathophysiological data, including a mechanistic explanation for the observed hypoexcitability in patient-derived MNs and a new therapeutic strategy to provide neuroprotection in MNs affected by ALS. Stem Cells 2016;34:1563-1575.


Assuntos
4-Aminopiridina/farmacologia , Esclerose Lateral Amiotrófica/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios Motores/patologia , Esclerose Lateral Amiotrófica/genética , Caspases/metabolismo , Diferenciação Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Canais Iônicos/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação/genética , Neuroproteção/efeitos dos fármacos , Fenótipo , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase/genética , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
13.
Neurobiol Dis ; 82: 420-429, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26253605

RESUMO

Autosomal-dominant mutations within the gene FUS (fused in sarcoma) are responsible for 5% of familial cases of amyotrophic lateral sclerosis (ALS). The FUS protein is physiologically mainly located in the nucleus, while cytoplasmic FUS aggregates are pathological hallmarks of FUS-ALS. Data from non-neuronal cell models and/or models using heterologous expression of FUS mutants suggest cytoplasmic FUS translocation as a pivotal initial event which leads to neurodegeneration depending on a second hit. Here we present the first human model of FUS-ALS using patient-derived neurons carrying endogenous FUS mutations leading to a benign (R521C) or a more severe clinical phenotype (frameshift mutation R495QfsX527). We thereby showed that the severity of the underlying FUS mutation determines the amount of cytoplasmic FUS accumulation and cellular vulnerability to exogenous stress. Cytoplasmic FUS inclusions formed spontaneously depending on both, severity of FUS mutation and neuronal aging. These aggregates showed typical characteristics of FUS-ALS including methylated FUS. Finally, neurodegeneration was not specific to layer V cortical neurons perfectly in line with the current model of disease spreading in ALS. Our study highlights the value and usefulness of patient-derived cell models in FUS-ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios/patologia , Proteína FUS de Ligação a RNA/genética , Adulto , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Progressão da Doença , Feminino , Humanos , Corpos de Inclusão/patologia , Corpos de Inclusão/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Pessoa de Meia-Idade , Neurônios Motores/patologia , Neurônios Motores/fisiologia , Mutação , Neurônios/fisiologia , Fenótipo , Proteína FUS de Ligação a RNA/metabolismo , Índice de Gravidade de Doença , Medula Espinal/patologia , Medula Espinal/fisiopatologia
14.
Cell Rep ; 8(6): 1697-1703, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25220454

RESUMO

The differentiation capability of induced pluripotent stem cells (iPSCs) toward certain cell types for disease modeling and drug screening assays might be influenced by their somatic cell of origin. Here, we have compared the neural induction of human iPSCs generated from fetal neural stem cells (fNSCs), dermal fibroblasts, or cord blood CD34(+) hematopoietic progenitor cells. Neural progenitor cells (NPCs) and neurons could be generated at similar efficiencies from all iPSCs. Transcriptomics analysis of the whole genome and of neural genes revealed a separation of neuroectoderm-derived iPSC-NPCs from mesoderm-derived iPSC-NPCs. Furthermore, we found genes that were similarly expressed in fNSCs and neuroectoderm, but not in mesoderm-derived iPSC-NPCs. Notably, these neural signatures were retained after transplantation into the cortex of mice and paralleled with increased survival of neuroectoderm-derived cells in vivo. These results indicate distinct origin-dependent neural cell identities in differentiated human iPSCs both in vitro and in vivo.


Assuntos
Encéfalo/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Animais , Antígenos CD34/metabolismo , Diferenciação Celular , Células Cultivadas , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Feto/citologia , Fibroblastos/citologia , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos NOD , Microscopia Confocal , Placa Neural/citologia
15.
Nat Rev Genet ; 15(9): 625-39, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25069490

RESUMO

Tractable and accurate disease models are essential for understanding disease pathogenesis and for developing new therapeutics. As stem cells are capable of self-renewal and differentiation, they are ideally suited both for generating these models and for obtaining the large quantities of cells required for drug development and transplantation therapies. Although proof of principle for the use of adult stem cells and embryonic stem cells in disease modelling has been established, induced pluripotent stem cells (iPSCs) have demonstrated the greatest utility for modelling human diseases. Furthermore, combining gene editing with iPSCs enables the generation of models of genetically complex disorders.


Assuntos
Doença/genética , Genoma Humano/genética , Células-Tronco Pluripotentes Induzidas/patologia , Diferenciação Celular , Humanos , Mutação , Edição de RNA/genética
16.
Stem Cells Dev ; 23(24): 3011-20, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25007389

RESUMO

Induced pluripotent stem cells (iPSCs) have become the most promising candidates for in vitro modeling of motor neuron (MN) diseases, such as amyotrophic lateral sclerosis (ALS), and possibly for future therapeutic implementation in regenerative medicine. We here present for the first time the differentiation of human cord-blood-derived iPSCs (hCBiPSCs) into MNs, the cell type primarily affected in ALS. In contrast to iPSCs generated from adult tissue, the hCBiPSCs used in this study hold the promise of lower genetic mutation burden or epigenetic alterations, which makes them ideal candidates for transplantation studies. Small-molecule-derived neural precursor cells (smNPCs) were generated from hCBiPSCs and used for the following differentiation studies to substantially shorten MN differentiation time. Consequently, as early as 18 days of in vitro differentiation, the MNs stained positive for neuronal- and for MN-specific markers accompanied by respective gene expression patterns. To demonstrate that the hCBiPSC-derived neural precursor cells (smNPCs) can be differentiated into functional MNs, the cells were characterized by calcium imaging and patch-clamp analysis. Calcium imaging detected the expression of functional voltage-dependent calcium and ligand-gated channels of several important neurotransmitters. Using whole-cell patch-clamp recordings, we observed functional neuronal properties like sodium-inward currents and action potentials (APs). Some cells showed spontaneous APs and synaptic activity that are signs of essential functional maturation. Having established a rapid and efficient method to generate functional MNs from hCBiPSCs, we demonstrate the differentiation potential of genetically unbiased hCBiPSCs as promising source for transplantation studies and also create a framework for future in-vitro disease modeling.


Assuntos
Sangue Fetal/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios Motores/citologia , Células-Tronco Neurais/citologia , Neurogênese , Potenciais de Ação , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Potenciais Sinápticos
17.
PLoS One ; 8(3): e59252, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533608

RESUMO

Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Doenças Neurodegenerativas/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Eletrofisiologia , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Crista Neural/citologia , Crista Neural/metabolismo , Doenças Neurodegenerativas/genética , Neurônios/citologia , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
18.
Z Evid Fortbild Qual Gesundhwes ; 106(3): 217-23, 2012.
Artigo em Alemão | MEDLINE | ID: mdl-22682419

RESUMO

Service quality for patients with genetic conditions can be assessed through the analysis of clinical genetic data sets, as was the case in this study. It represents a secondary analysis of a compilation of a single genetic expert's medical opinions covering the years 2000 to 2009, solicited by private health insurance companies with the intention of probing into medical necessity and adequacy of genetic testing ordered by physicians. Genetic testing has become an increasingly important part of clinical diagnostic services. Controlling these services does not only reduce costs but also saves patients from unwarranted over-utilisation. Therefore, the reasons given by doctors when ordering genetic tests are part of the quality of service delivery. The study revealed that more than 30% of the molecular genetic tests ordered lack sound medical reasoning and 30% of the cases studied show violation or neglect of guidelines and recommendations for diagnostic procedures with respect to genetic testing. In essence, the findings indicate a need for human genetic information among physicians. Their professional organisations are called upon to design and offer CME/CPD programmes in medical genetics to maintain and continually improve the quality of medical genetic care for patients with genetic conditions.


Assuntos
Prova Pericial/legislação & jurisprudência , Doenças Genéticas Inatas/diagnóstico , Serviços em Genética/legislação & jurisprudência , Testes Genéticos/legislação & jurisprudência , Seguro Saúde/legislação & jurisprudência , Programas Nacionais de Saúde/legislação & jurisprudência , Garantia da Qualidade dos Cuidados de Saúde/legislação & jurisprudência , Doenças Genéticas Inatas/genética , Alemanha , Fidelidade a Diretrizes , Mau Uso de Serviços de Saúde/legislação & jurisprudência , Humanos , Papel do Médico , Melhoria de Qualidade/legislação & jurisprudência
19.
PLoS One ; 7(4): e34645, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22485183

RESUMO

Expression of the four transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is sufficient to reprogram somatic cells into induced pluripotent stem (iPSCs). However, this process is slow and inefficient compared with the fusion of somatic cells with embryonic stem cells (ESCs), indicating that ESCs express additional factors that can enhance the efficiency of reprogramming. We had previously developed a method to detect and isolate early neural induction intermediates during the differentiation of mouse ESCs. Using the gene expression profiles of these intermediates, we identified 23 ESC-specific transcripts and tested each for the ability to enhance iPSC formation. Of the tested factors, zinc finger protein 296 (Zfp296) led to the largest increase in mouse iPSC formation. We confirmed that Zfp296 was specifically expressed in pluripotent stem cells and germ cells. Zfp296 in combination with OSKM induced iPSC formation earlier and more efficiently than OSKM alone. Through mouse chimera and teratoma formation, we demonstrated that the resultant iPSCs were pluripotent. We showed that Zfp296 activates transcription of the Oct4 gene via the germ cell-specific conserved region 4 (CR4), and when overexpressed in mouse ESCs leads to upregulation of Nanog expression and downregulation of the expression of differentiation markers, including Sox17, Eomes, and T, which is consistent with the observation that Zfp296 enhances the efficiency of reprogramming. In contrast, knockdown of Zfp296 in ESCs leads to the expression of differentiation markers. Finally, we demonstrated that expression of Zfp296 in ESCs inhibits, but does not block, differentiation into neural cells.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Antígenos de Diferenciação/metabolismo , Desdiferenciação Celular , Diferenciação Celular , Quimera , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Expressão Gênica , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Fator 3 de Transcrição de Octâmero/genética , Especificidade de Órgãos , Regiões Promotoras Genéticas , Teratoma/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
20.
Stem Cells ; 29(8): 1304-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21656609

RESUMO

Human adult germline stem cells (haGSCs) were established from human testicular biopsies and were claimed to be pluripotent. Recently, the gene expression profile of haGSCs demonstrated that these cells presented with a fibroblast rather than a pluripotent identity. Nevertheless, haGSCs were reported to generate teratomas. In this report, we address this discrepancy. Instead of using haGSCs, which are no longer available for the stem cell community, we used a human testicular fibroblastic cell (hTFC) line that presents with a gene expression profile highly similar to that of haGSCs. Indeed, as shown by microarray analysis, the similarity between hTFCs and haGSCs is comparable to human embryonic stem cell (hESC) lines derived by different laboratories. We argue that the almost identical gene expression profile of hTFCs and haGSCs should result in a very similar if not identical differentiation potential. Strikingly, hTFCs were not able to generate teratomas after injection into nude mice. Instead, they formed a mesenchymal lesion that morphologically resembled the putative haGSC-derived teratomas reported previously. We conclude that haGSCs, which exhibit a profile similar to that of fibroblasts and could not generate teratomas, are not pluripotent. Future work will have to show if pluripotent cells can be derived from human testicular biopsies. Mouse work and certain testicular germ cell tumors indicate that this will be possible.


Assuntos
Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Testículo/citologia , Ensaio de Unidades Formadoras de Colônias , Fibroblastos/fisiologia , Perfilação da Expressão Gênica , Genes myc , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Masculino , Fator 3 de Transcrição de Octâmero/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição SOXB1/genética , Teratoma/patologia , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA