Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Protein Sci ; 33(4): e4950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511503

RESUMO

Protein nuclear magnetic resonance (NMR) spectroscopy relies on the ability to isotopically label polypeptides, which is achieved through heterologous expression in various host organisms. Most commonly, Escherichia coli is employed by leveraging isotopically substituted ammonium and glucose to uniformly label proteins with 15N and 13C, respectively. Moreover, E. coli can grow and express proteins in uniformly deuterium-substituted water (D2O), a strategy useful for experiments targeting high molecular weight proteins. Unfortunately, many proteins, particularly those requiring specific posttranslational modifications like disulfide bonding or glycosylation for proper folding and/or function, cannot be readily expressed in their functional forms using E. coli-based expression systems. One such class of proteins includes T-cell receptors and their related preT-cell receptors. In this study, we present an expression system for isotopic labeling of proteins using a nonadherent human embryonic kidney cell line, Expi293F, and a specially designed media. We demonstrate the application of this platform to the ß subunit common to both receptors. In addition, we show that this expression system and media can be used to specifically label amino acids Phe, Ile, Val, and Leu in this system, utilizing an amino acid-specific labeling protocol that allows targeted incorporation at high efficiency without significant isotopic scrambling. We demonstrate that this system can also be used to express proteins with fluorinated amino acids. We were routinely able to obtain an NMR sample with a concentration of 200 µM from 30 mL of culture media, utilizing less than 20 mg of the labeled amino acids.


Assuntos
Aminoácidos , Escherichia coli , Animais , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Aminoácidos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Mamíferos
2.
Elife ; 132024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167271

RESUMO

Mechanical force is critical for the interaction between an αß T cell receptor (TCR) and a peptide-bound major histocompatibility complex (pMHC) molecule to initiate productive T-cell activation. However, the underlying mechanism remains unclear. We use all-atom molecular dynamics simulations to examine the A6 TCR bound to HLA-A*02:01 presenting agonist or antagonist peptides under different extensions to simulate the effects of applied load on the complex, elucidating their divergent biological responses. We found that TCR α and ß chains move asymmetrically, which impacts the interface with pMHC, in particular the peptide-sensing CDR3 loops. For the wild-type agonist, the complex stabilizes in a load-dependent manner while antagonists destabilize it. Simulations of the Cß FG-loop deletion, which reduces the catch bond response, and simulations with in silico mutant peptides further support the observed behaviors. The present results highlight the combined role of interdomain motion, fluctuating forces, and interfacial contacts in determining the mechanical response and fine peptide discrimination by a TCR, thereby resolving the conundrum of nearly identical crystal structures of TCRαß-pMHC agonist and antagonist complexes.


Assuntos
Peptídeos , Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Ligação Proteica , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Simulação de Dinâmica Molecular , Complexo Principal de Histocompatibilidade , Antígenos de Histocompatibilidade/metabolismo
3.
Nat Cancer ; 4(7): 1016-1035, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37430060

RESUMO

Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is treated with ALK tyrosine kinase inhibitors (TKIs), but the lack of activity of immune checkpoint inhibitors (ICIs) is poorly understood. Here, we identified immunogenic ALK peptides to show that ICIs induced rejection of ALK+ tumors in the flank but not in the lung. A single-peptide vaccination restored priming of ALK-specific CD8+ T cells, eradicated lung tumors in combination with ALK TKIs and prevented metastatic dissemination of tumors to the brain. The poor response of ALK+ NSCLC to ICIs was due to ineffective CD8+ T cell priming against ALK antigens and is circumvented through specific vaccination. Finally, we identified human ALK peptides displayed by HLA-A*02:01 and HLA-B*07:02 molecules. These peptides were immunogenic in HLA-transgenic mice and were recognized by CD8+ T cells from individuals with NSCLC, paving the way for the development of a clinical vaccine to treat ALK+ NSCLC.


Assuntos
Vacinas Anticâncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Quinase do Linfoma Anaplásico/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Vacinas Anticâncer/uso terapêutico , Receptores Proteína Tirosina Quinases/uso terapêutico , Linfócitos T CD8-Positivos/patologia , Vacinas de Subunidades Antigênicas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/uso terapêutico , Camundongos Transgênicos , Vacinação
4.
Proc Natl Acad Sci U S A ; 120(27): e2215694120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37339184

RESUMO

T cell receptors (TCR) on cytolytic T lymphocytes (CTLs) recognize "foreign" antigens bound in the groove of major histocompatibility complex (MHC) molecules (H-2 in mouse and HLA in human) displayed on altered cells. These antigens are peptide fragments of proteins derived either from infectious pathogens or cellular transformations during cancer evolution. The conjoint ligand formed by the foreign peptide and MHC, termed pMHC, marks an aberrant cell as a target for CTL-mediated destruction. Recent data have provided compelling evidence that adaptive protection is achieved in a facile manner during immune surveillance when mechanical load consequent to cellular motion is applied to the bond formed between an αß TCR and its pMHC ligand arrayed on a disease-altered cell. Mechanobiology maximizes both TCR specificity and sensitivity in comparison to receptor ligation in the absence of force. While the field of immunotherapy has made advances to impact the survival of cancer patients, the latest information relevant to T cell targeting and mechanotransduction has yet to be applied for T cell monitoring and treatment of patients in the clinic. Here we review these data, and challenge scientists and physicians to apply critical biophysical parameters of TCR mechanobiology to the medical oncology field, broadening treatment success within and among various cancer types. We assert that TCRs with digital ligand-sensing performance capability directed at sparsely as well as luminously displayed tumor-specific neoantigens and certain tumor-associated antigens can improve effective cancer vaccine development and immunotherapy paradigms.


Assuntos
Mecanotransdução Celular , Neoplasias , Humanos , Camundongos , Animais , Ligantes , Receptores de Antígenos de Linfócitos T , Antígenos de Histocompatibilidade , Neoplasias/terapia , Antígenos de Neoplasias , Oncologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo
5.
Nature ; 613(7944): 565-574, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410718

RESUMO

Programming T cells to distinguish self from non-self is a vital, multi-step process that occurs in the thymus1-4. Signalling through the pre-T cell receptor (preTCR), a CD3-associated heterodimer comprising an invariant pTα chain and a clone-specific ß chain, is a critical early checkpoint in thymocyte development within the αß T cell lineage5,6. PreTCRs arrayed on CD4-CD8- double-negative thymocytes ligate peptides bound to major histocompatibility complex molecules (pMHC) on thymic stroma, similar to αß T cell receptors that appear on CD4+CD8+ double-positive thymocytes, but via a different molecular docking strategy7-10. Here we show the consequences of these distinct interactions for thymocyte progression using synchronized fetal thymic progenitor cultures that differ in the presence or absence of pMHC on support stroma, and single-cell transcriptomes at key thymocyte developmental transitions. Although major histocompatibility complex (MHC)-negative stroma fosters αß T cell differentiation, the absence of preTCR-pMHC interactions leads to deviant thymocyte transcriptional programming associated with dedifferentiation. Highly proliferative double-negative and double-positive thymocyte subsets emerge, with antecedent characteristics of T cell lymphoblastic and myeloid malignancies. Compensatory upregulation of diverse MHC class Ib proteins in B2m/H2-Ab1 MHC-knockout mice partially safeguards in vivo thymocyte progression, although disseminated double-positive thymic tumours may develop with ageing. Thus, as well as promoting ß chain repertoire broadening for subsequent αß T cell receptor utilization, preTCR-pMHC interactions limit cellular plasticity to facilitate normal thymocyte differentiation and proliferation that, if absent, introduce developmental vulnerabilities.


Assuntos
Desdiferenciação Celular , Antígenos de Histocompatibilidade Classe I , Receptores de Antígenos de Linfócitos T , Timócitos , Animais , Camundongos , Camundongos Knockout , Simulação de Acoplamento Molecular , Peptídeos/imunologia , Peptídeos/metabolismo , Timócitos/citologia , Timócitos/imunologia , Timo/citologia , Timo/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo
6.
Methods Mol Biol ; 2478: 727-753, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36063340

RESUMO

T-cell antigen receptors (TCRs) are mechanosensors, which initiate a signaling cascade upon ligand recognition resulting in T-cell differentiation, homeostasis, effector and regulatory functions. An optical trap combined with fluorescence permits direct monitoring of T-cell triggering in response to force application at various concentrations of peptide-bound major histocompatibility complex molecules (pMHC). The technique mimics physiological shear forces applied as cells crawl across antigen-presenting surfaces during immune surveillance. True single molecule studies performed on single cells profile force-bond lifetime, typically seen as a catch bond, and conformational change at the TCR-pMHC bond on the surface of the cell upon force loading. Together, activation and single molecule single cell studies provide chemical and physical triggering thresholds as well as insight into catch bond formation and quaternary structural changes of single TCRs. The present methods detail assay design, preparation, and execution, as well as data analysis. These methods may be applied to a wide range of pMHC-TCR interactions and have potential for adaptation to other receptor-ligand systems.


Assuntos
Pinças Ópticas , Receptores de Antígenos de Linfócitos T alfa-beta , Antígenos de Histocompatibilidade , Ligantes , Complexo Principal de Histocompatibilidade , Imagem Óptica , Peptídeos/química , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética
7.
J Biol Chem ; 296: 100255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33837736

RESUMO

T lymphocytes discriminate between healthy and infected or cancerous cells via T-cell receptor-mediated recognition of peptides bound and presented by cell-surface-expressed major histocompatibility complex molecules (MHCs). Pre-T-cell receptors (preTCRs) on thymocytes foster development of αßT lymphocytes through their ß chain interaction with MHC displaying self-peptides on thymic epithelia. The specific binding of a preTCR with a peptide-MHC complex (pMHC) has been identified previously as forming a weak affinity complex with a distinct interface from that of mature αßTCR. However, a lack of appropriate tools has limited prior efforts to investigate this unique interface. Here we designed a small-scale linkage screening protocol using bismaleimide linkers for determining residue-specific distance constraints between transiently interacting protein pairs in solution. Employing linkage distance restraint-guided molecular modeling, we report the oriented solution docking geometry of a preTCRß-pMHC interaction. The linkage model of preTCRß-pMHC complex was independently verified with paramagnetic pseudocontact chemical shift (PCS) NMR of the unlinked protein mixtures. Using linkage screens, we show that the preTCR binds with differing affinities to peptides presented by MHC in solution. Moreover, the C-terminal peptide segment is a key determinant in preTCR-pMHC recognition. We also describe the process for future large-scale production and purification of the linked constructs for NMR, X-ray crystallography, and single-molecule electron microscopy studies.


Assuntos
Antígenos de Superfície/ultraestrutura , Ligação Proteica/genética , Receptores de Antígenos de Linfócitos T/ultraestrutura , Linfócitos T/ultraestrutura , Antígenos de Superfície/química , Antígenos de Superfície/genética , Humanos , Complexo Principal de Histocompatibilidade/genética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/ultraestrutura , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/genética , Domínios e Motivos de Interação entre Proteínas/genética , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/ultraestrutura , Linfócitos T/química , Linfócitos T/imunologia , Timócitos/química , Timócitos/ultraestrutura
8.
Cancer Discov ; 11(8): 1952-1969, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33707236

RESUMO

Small cell lung carcinoma (SCLC) is highly mutated, yet durable response to immune checkpoint blockade (ICB) is rare. SCLC also exhibits cellular plasticity, which could influence its immunobiology. Here we discover that a distinct subset of SCLC uniquely upregulates MHC I, enriching for durable ICB benefit. In vitro modeling confirms epigenetic recovery of MHC I in SCLC following loss of neuroendocrine differentiation, which tracks with derepression of STING. Transient EZH2 inhibition expands these nonneuroendocrine cells, which display intrinsic innate immune signaling and basally restored antigen presentation. Consistent with these findings, murine nonneuroendocrine SCLC tumors are rejected in a syngeneic model, with clonal expansion of immunodominant effector CD8 T cells. Therapeutically, EZH2 inhibition followed by STING agonism enhances T-cell recognition and rejection of SCLC in mice. Together, these data identify MHC I as a novel biomarker of SCLC immune responsiveness and suggest novel immunotherapeutic approaches to co-opt SCLC's intrinsic immunogenicity. SIGNIFICANCE: SCLC is poorly immunogenic, displaying modest ICB responsiveness with rare durable activity. In profiling its plasticity, we uncover intrinsically immunogenic MHC Ihi subpopulations of nonneuroendocrine SCLC associated with durable ICB benefit. We also find that combined EZH2 inhibition and STING agonism uncovers this cell state, priming cells for immune rejection.This article is highlighted in the In This Issue feature, p. 1861.


Assuntos
Plasticidade Celular , Neoplasias Pulmonares/imunologia , Carcinoma de Pequenas Células do Pulmão/imunologia , Animais , Estudos de Coortes , Modelos Animais de Doenças , Registros Eletrônicos de Saúde , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Carcinoma de Pequenas Células do Pulmão/patologia
9.
Front Immunol ; 10: 2766, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921104

RESUMO

Tumor-infiltrating lymphocytes (TIL) are considered enriched for T cells recognizing shared tumor antigens or mutation-derived neoepitopes. We performed exome sequencing and HLA-A*02:01 epitope prediction from tumor cell lines from two HLA-A2-positive melanoma patients whose TIL displayed strong tumor reactivity. The potential neoepitopes were screened for recognition using autologous TIL by immunological assays and presentation on tumor major histocompatibility complex class I (MHC-I) molecules by Poisson detection mass spectrometry (MS). TIL from the patients recognized 5/181 and 3/49 of the predicted neoepitopes, respectively. MS screening detected 3/181 neoepitopes on tumor MHC-I from the first patient but only one was also among those recognized by TIL. Consequently, TIL enriched for neoepitope specificity failed to recognize tumor cells, despite being activated by peptides. For the second patient, only after IFN-γ treatment of the tumor cells was one of 49 predicted neoepitopes detected by MS, and this coincided with recognition by TIL sorted for the same specificity. Importantly, specific T cells could be expanded from patient and donor peripheral blood mononuclear cells (PBMC) for all neoepitopes recognized by TIL and/or detected on tumor MHC-I. In summary, stimulating the appropriate inflammatory environment within tumors may promote neoepitope MHC presentation while expanding T cells in blood may circumvent lack of specific TIL. The discordance in detection between physical and functional methods revealed here can be rationalized and used to improve neoantigen-targeted T cell immunotherapy.


Assuntos
Epitopos de Linfócito T/imunologia , Linfócitos do Interstício Tumoral/imunologia , Antígenos Específicos de Melanoma/imunologia , Melanoma/imunologia , Adulto , Idoso , Alelos , Apresentação de Antígeno , Linhagem Celular Tumoral , Citometria de Fluxo , Antígeno HLA-A2/imunologia , Antígenos de Histocompatibilidade/imunologia , Humanos , Inflamação/imunologia , Masculino , Espectrometria de Massas , Antígenos Específicos de Melanoma/genética , Mutação , Biblioteca de Peptídeos , Sequenciamento do Exoma
10.
Trends Immunol ; 39(8): 596-609, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30060805

RESUMO

T lymphocytes use αß T cell receptors (TCRs) to recognize sparse antigenic peptides bound to MHC molecules (pMHCs) arrayed on antigen-presenting cells (APCs). Contrary to conventional receptor-ligand associations exemplified by antigen-antibody interactions, forces play a crucial role in nonequilibrium mechanosensor-based T cell activation. Both T cell motility and local cytoskeleton machinery exert forces (i.e., generate loads) on TCR-pMHC bonds. We review biological features of the load-dependent activation process as revealed by optical tweezers single molecule/single cell and other biophysical measurements. The findings link pMHC-triggered TCRs to single cytoskeletal motors; define the importance of energized anisotropic (i.e., force direction dependent) activation; and characterize immunological synapse formation as digital, revealing no serial requirement. The emerging picture suggests new approaches for the monitoring and design of cytotoxic T lymphocyte (CTL)-based immunotherapy.


Assuntos
Citoesqueleto/metabolismo , Imunoterapia Adotiva/métodos , Mecanotransdução Celular , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T/fisiologia , Animais , Anisotropia , Apresentação de Antígeno , Antígenos/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Humanos , Peptídeos/metabolismo , Análise de Célula Única
11.
Eur J Immunol ; 48(1): 128-150, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28872670

RESUMO

To investigate the role of TCR-pMHC interaction in regulating lung CD8 tissue-resident T cell (TR ) differentiation, polyclonal responses were compared against NP366-374 /Db and PA224-233 /Db , two immunodominant epitopes that arise during influenza A infection in mice. Memory niches distinct from iBALTs develop within the lamina propria, supporting CD103+ and CD103- CD8 TR generation and intraepithelial translocation. Gene set enrichment analysis (GSEA) and weighted gene co-expression network analysis (WGCNA) identify dominant TCR, adherens junction, RIG-I-like and NOD-like pattern recognition receptor as well as TGF-ß signaling pathways and memory signatures among PA224-233 /Db T cells consistent with T resident memory (TRM ) status. In contrast, NP366-374 /Db T cells exhibit enrichment of effector signatures, upregulating pro-inflammatory mediators even among TRM . While NP366-374 /Db T cells manifest transcripts linked to canonical exhaustion pathways, PA224-233 /Db T cells exploit P2rx7 purinoreceptor attenuation. The NP366-374 /Db CD103+ subset expresses the antimicrobial lactotransferrin whereas PA224-233 /Db CD103+ utilizes pore-forming mpeg-1, with <22% of genes correspondingly upregulated in CD103+ (or CD103- ) subsets of both specificities. Thus, TCR-pMHC interactions among TR and antigen presenting cells in a tissue milieu strongly impact CD8 T cell biology.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Antígenos CD/biossíntese , Diferenciação Celular/imunologia , Proteína DEAD-box 58/metabolismo , Feminino , Memória Imunológica/imunologia , Cadeias alfa de Integrinas/biossíntese , Pulmão/citologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas NLR/metabolismo , Infecções por Orthomyxoviridae/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Fator de Crescimento Transformador beta/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(39): E8204-E8213, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28811364

RESUMO

T lymphocytes use surface [Formula: see text] T-cell receptors (TCRs) to recognize peptides bound to MHC molecules (pMHCs) on antigen-presenting cells (APCs). How the exquisite specificity of high-avidity T cells is achieved is unknown but essential, given the paucity of foreign pMHC ligands relative to the ubiquitous self-pMHC array on an APC. Using optical traps, we determine physicochemical triggering thresholds based on load and force direction. Strikingly, chemical thresholds in the absence of external load require orders of magnitude higher pMHC numbers than observed physiologically. In contrast, force applied in the shear direction ([Formula: see text]10 pN per TCR molecule) triggers T-cell Ca2+ flux with as few as two pMHC molecules at the interacting surface interface with rapid positional relaxation associated with similarly directed motor-dependent transport via [Formula: see text]8-nm steps, behaviors inconsistent with serial engagement during initial TCR triggering. These synergistic directional forces generated during cell motility are essential for adaptive T-cell immunity against infectious pathogens and cancers.


Assuntos
Apresentação de Antígeno/imunologia , Ativação Linfocitária/imunologia , Mecanotransdução Celular/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Linhagem Celular , Camundongos , Camundongos Knockout , Pinças Ópticas
13.
Cancer Immunol Immunother ; 66(6): 731-735, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28280852

RESUMO

Tumor T cell antigens are both diagnostically and therapeutically valuable molecules. A large number of new peptides are examined as potential tumor epitopes each year, yet there is no infrastructure for storing and accessing the results of these experiments. We have retroactively cataloged more than 1000 tumor peptides from 368 different proteins, and implemented a web-accessible infrastructure for storing and accessing these experimental results. All peptides in TANTIGEN are labeled as one of the four categories: (1) peptides measured in vitro to bind the HLA, but not reported to elicit either in vivo or in vitro T cell response, (2) peptides found to bind the HLA and to elicit an in vitro T cell response, (3) peptides shown to elicit in vivo tumor rejection, and (4) peptides processed and naturally presented as defined by physical detection. In addition to T cell response, we also annotate peptides that are naturally processed HLA binders, e.g., peptides eluted from HLA in mass spectrometry studies. TANTIGEN provides a rich data resource for tumor-associated epitope and neoepitope discovery studies and is freely available at http://cvc.dfci.harvard.edu/tantigen/ or http://projects.met-hilab.org/tadb (mirror).


Assuntos
Antígenos de Neoplasias/imunologia , Epitopos de Linfócito T/imunologia , Antígenos HLA/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Biologia Computacional , Bases de Dados como Assunto , Bases de Dados de Proteínas , Humanos
14.
J Virol ; 90(19): 8875-90, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27466419

RESUMO

UNLABELLED: An effective preventive vaccine is highly sought after in order to stem the current HIV-1 pandemic. Both conservation of contiguous gp41 membrane-proximal external region (MPER) amino acid sequences across HIV-1 clades and the ability of anti-MPER broadly neutralizing antibodies (BNAbs) to block viral hemifusion/fusion establish the MPER as a prime vaccination target. In earlier studies, we described the development of an MPER vaccine formulation that takes advantage of liposomes to array the MPER on a lipid bilayer surface, paralleling its native configuration on the virus membrane while also incorporating molecular adjuvant and CD4 T cell epitope cargo. Here we demonstrate that several immunizations with MPER/liposomes induce high levels of bone marrow long-lived plasma cell (LLPC) antibody production. Single-cell immunoglobulin gene retrieval analysis shows that these plasma cells are derived from a germ line repertoire of B cells with a diverse representation of immunoglobulin genes, exhibiting antigen-driven positive selection. Characterization of LLPC recombinant monoclonal antibodies (rMAbs) indicates that antigen recognition is achieved through convergence on a common epitopic focus by utilizing various complementarity-determining region H3 (CDRH3) lengths. Importantly, the vast majority of rMAbs produced from these cells lack polyreactivity yet manifest antigen specificity in the context of lipids, shaping MPER-specific paratopes through selective pressure. Taken together, these findings demonstrate that the MPER is a vaccine target with minimal risk of generating off-target autoimmunity. IMPORTANCE: A useful vaccine must generate desired long-term, antigen-specific antibody responses devoid of polyreactivity or autoreactivity. The common polyreactive features of some HIV-1 BNAbs have raised concern about elicitation of anti-MPER antibodies. Utilizing single-LLPC repertoire analysis and biophysical characterization of anti-MPER rMAbs, we show that their fine specificities require a structural fitness of the antibody combining site involving heavy and light chain variable domains shaped by somatic hypermutation and affinity maturation of B cells in the germinal center. Perhaps more importantly, our results demonstrate that the majority of MPER-specific antibodies are not inherently polyspecific and/or autoreactive, suggesting that polyreactivity of MPER-specific antibodies is separable from their antigen specificity.


Assuntos
Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/metabolismo , Antígenos HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Plasmócitos/imunologia , Anticorpos Monoclonais/imunologia , Epitopos de Linfócito B/imunologia , Lipídeos de Membrana/metabolismo
15.
Proc Natl Acad Sci U S A ; 112(27): 8373-8, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26056289

RESUMO

Adaptive cellular immunity requires accurate self- vs. nonself-discrimination to protect against infections and tumorous transformations while at the same time excluding autoimmunity. This vital capability is programmed in the thymus through selection of αßT-cell receptors (αßTCRs) recognizing peptides bound to MHC molecules (pMHC). Here, we show that the pre-TCR (preTCR), a pTα-ß heterodimer appearing before αßTCR expression, directs a previously unappreciated initial phase of repertoire selection. Contrasting with the ligand-independent model of preTCR function, we reveal through NMR and bioforce-probe analyses that the ß-subunit binds pMHC using Vß complementarity-determining regions as well as an exposed hydrophobic Vß patch characteristic of the preTCR. Force-regulated single bonds akin to those of αßTCRs but with more promiscuous ligand specificity trigger calcium flux. Thus, thymic development involves sequential ß- and then, αß-repertoire tuning, whereby preTCR interactions with self pMHC modulate early thymocyte expansion, with implications for ß-selection, immunodominant peptide recognition, and germ line-encoded MHC interaction.


Assuntos
Diferenciação Celular/imunologia , Regiões Determinantes de Complementaridade/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Timócitos/imunologia , Sequência de Aminoácidos , Animais , Cálcio/imunologia , Cálcio/metabolismo , Células Cultivadas , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/metabolismo , Citometria de Fluxo , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade/metabolismo , Ligantes , Ativação Linfocitária/imunologia , Espectroscopia de Ressonância Magnética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Imunológicos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica/imunologia , Multimerização Proteica/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Homologia de Sequência de Aminoácidos , Timócitos/citologia , Timócitos/metabolismo , Timo/embriologia , Timo/imunologia , Timo/metabolismo
16.
Cancer Immunol Res ; 3(4): 305-12, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25847967

RESUMO

αß T lymphocytes sense perturbations in host cellular body components induced by infectious pathogens, oncogenic transformation, or chemical or physical damage. Millions to billions of these lymphocytes are generated through T-lineage development in the thymus, each endowed with a clonally restricted surface T-cell receptor (TCR). An individual TCR has the capacity to recognize a distinct "foreign" peptide among the myriad of antigens that the mammalian host must be capable of detecting. TCRs explicitly distinguish foreign from self-peptides bound to major histocompatibility complex (MHC) molecules. This is a daunting challenge, given that the MHC-linked peptidome consists of thousands of distinct peptides with a relevant nonself target antigen often embedded at low number, among orders of magnitude higher frequency self-peptides. In this Masters of Immunology article, I review how TCR structure and attendant mechanobiology involving nonlinear responses affect sensitivity as well as specificity to meet this requirement. Assessment of human tumor-cell display using state-of-the-art mass spectrometry physical detection methods that quantify epitope copy number can help to provide information about requisite T-cell functional avidity affording protection and/or therapeutic immunity. Future rational CD8 cytotoxic T-cell-based vaccines may follow, targeting virally induced cancers, other nonviral immunogenic tumors, and potentially even nonimmunogenic tumors whose peptide display can be purposely altered by MHC-binding drugs to stimulate immune attack.


Assuntos
Antígenos de Neoplasias/análise , Imunoterapia/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/uso terapêutico , Humanos , Mecanotransdução Celular/imunologia , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia
17.
Proc Natl Acad Sci U S A ; 112(7): 2151-6, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646416

RESUMO

Vaccines eliciting immunity against influenza A viruses (IAVs) are currently antibody-based with hemagglutinin-directed antibody titer the only universally accepted immune correlate of protection. To investigate the disconnection between observed CD8 T-cell responses and immunity to IAV, we used a Poisson liquid chromatography data-independent acquisition MS method to physically detect PR8/34 (H1N1), X31 (H3N2), and Victoria/75 (H3N2) epitopes bound to HLA-A*02:01 on human epithelial cells following in vitro infection. Among 32 PR8 peptides (8-10mers) with predicted IC50 < 60 nM, 9 were present, whereas 23 were absent. At 18 h postinfection, epitope copies per cell varied from a low of 0.5 for M13-11 to a high of >500 for M1(58-66) with PA, HA, PB1, PB2, and NA epitopes also detected. However, aside from M1(58-66), natural CD8 memory responses against conserved presented epitopes were either absent or only weakly observed by blood Elispot. Moreover, the functional avidities of the immunodominant M1(58-66)/HLA-A*02:01-specific T cells were so poor as to be unable to effectively recognize infected human epithelium. Analysis of T-cell responses to primary PR8 infection in HLA-A*02:01 transgenic B6 mice underscores the poor avidity of T cells recognizing M1(58-66). By maintaining high levels of surface expression of this epitope on epithelial and dendritic cells, the virus exploits the combination of immunodominance and functional inadequacy to evade HLA-A*02:01-restricted T-cell immunity. A rational approach to CD8 vaccines must characterize processing and presentation of pathogen-derived epitopes as well as resultant immune responses. Correspondingly, vaccines may be directed against "stealth" epitopes, overriding viral chicanery.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos/análise , Vírus da Influenza A/imunologia , Pulmão/virologia , Cromatografia Líquida , Células Epiteliais/imunologia , Células Epiteliais/virologia , Epitopos/imunologia , Humanos , Pulmão/imunologia
18.
Proc Natl Acad Sci U S A ; 112(5): 1517-22, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605925

RESUMO

The αß T-cell receptor (TCR) on each T lymphocyte mediates exquisite specificity for a particular foreign peptide bound to a major histocompatibility complex molecule (pMHC) displayed on the surface of altered cells. This recognition stimulates protection in the mammalian host against intracellular pathogens, including viruses, and involves piconewton forces that accompany pMHC ligation. Physical forces are generated by T-lymphocyte movement during immune surveillance as well as by cytoskeletal rearrangements at the immunological synapse following cessation of cell migration. The mechanistic explanation for how TCRs distinguish between foreign and self-peptides bound to a given MHC molecule is unclear: peptide residues themselves comprise few of the TCR contacts on the pMHC, and pathogen-derived peptides are scant among myriad self-peptides bound to the same MHC class arrayed on infected cells. Using optical tweezers and DNA tether spacer technology that permit piconewton force application and nanometer scale precision, we have determined how bioforces relate to self versus nonself discrimination. Single-molecule analyses involving isolated αß-heterodimers as well as complete TCR complexes on T lymphocytes reveal that the FG loop in the ß-subunit constant domain allosterically controls both the variable domain module's catch bond lifetime and peptide discrimination via force-driven conformational transition. In contrast to integrins, the TCR interrogates its ligand via a strong force-loaded state with release through a weakened, extended state. Our work defines a key element of TCR mechanotransduction, explaining why the FG loop structure evolved for adaptive immunity in αß but not γδTCRs or immunoglobulins.


Assuntos
Complexo Principal de Histocompatibilidade , Peptídeos/química , Receptores de Antígenos de Linfócitos T alfa-beta/química , Sequência de Aminoácidos , Modelos Moleculares , Pinças Ópticas , Homologia de Sequência de Aminoácidos
19.
Front Immunol ; 5: 418, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25237310

RESUMO

Vaccine-elicited cytotoxic T lymphocytes (CTL) recognizing conserved fragments of a pathogen's proteome could greatly impact infectious diseases and cancers. Enabling this potential are recent advances in mass spectrometry that identify specific target peptides among the myriad HLA-bound peptides on altered cells. Ultrasensitivity of these physical detection methods allows for the direct assessment of peptide presentation on small numbers of tissue-derived cells. In addition, concurrent advances in immunobiology suggest ways to induce CTLs with requisite functional avidity and tissue deployment. Elicitation of high-avidity resident-memory T cells through vaccination may shift the vaccinology paradigm both for preventive and therapeutic approaches to human disease control.

20.
Proc Natl Acad Sci U S A ; 111(21): E2182-90, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24782546

RESUMO

Breast cancer is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.7 million new cases and 522,000 deaths around the world in 2012 alone. Cancer stem cells (CSCs) are essential for tumor reoccurrence and metastasis which is the major source of cancer lethality. G protein-coupled receptor chemokine (C-X-C motif) receptor 4 (CXCR4) is critical for tumor metastasis. However, stromal cell-derived factor 1 (SDF-1)/CXCR4-mediated signaling pathways in breast CSCs are largely unknown. Using isotope reductive dimethylation and large-scale MS-based quantitative phosphoproteome analysis, we examined protein phosphorylation induced by SDF-1/CXCR4 signaling in breast CSCs. We quantified more than 11,000 phosphorylation sites in 2,500 phosphoproteins. Of these phosphosites, 87% were statistically unchanged in abundance in response to SDF-1/CXCR4 stimulation. In contrast, 545 phosphosites in 266 phosphoproteins were significantly increased, whereas 113 phosphosites in 74 phosphoproteins were significantly decreased. SDF-1/CXCR4 increases phosphorylation in 60 cell migration- and invasion-related proteins, of them 43 (>70%) phosphoproteins are unrecognized. In addition, SDF-1/CXCR4 upregulates the phosphorylation of 44 previously uncharacterized kinases, 8 phosphatases, and 1 endogenous phosphatase inhibitor. Using computational approaches, we performed system-based analyses examining SDF-1/CXCR4-mediated phosphoproteome, including construction of kinase-substrate network and feedback regulation loops downstream of SDF-1/CXCR4 signaling in breast CSCs. We identified a previously unidentified SDF-1/CXCR4-PKA-MAP2K2-ERK signaling pathway and demonstrated the feedback regulation on MEK, ERK1/2, δ-catenin, and PPP1Cα in SDF-1/CXCR4 signaling in breast CSCs. This study gives a system-wide view of phosphorylation events downstream of SDF-1/CXCR4 signaling in breast CSCs, providing a resource for the study of CSC-targeted cancer therapy.


Assuntos
Neoplasias da Mama/genética , Quimiocina CXCL12/metabolismo , Retroalimentação Fisiológica/fisiologia , Metástase Neoplásica/fisiopatologia , Células-Tronco Neoplásicas/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais/genética , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos SCID , Fosforilação , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA