Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 65(6): 1096-1108.e6, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28306505

RESUMO

Protein aggregation is associated with age-related neurodegenerative disorders, such as Alzheimer's and polyglutamine diseases. As a causal relationship between protein aggregation and neurodegeneration remains elusive, understanding the cellular mechanisms regulating protein aggregation will help develop future treatments. To identify such mechanisms, we conducted a forward genetic screen in a C. elegans model of polyglutamine aggregation and identified the protein MOAG-2/LIR-3 as a driver of protein aggregation. In the absence of polyglutamine, MOAG-2/LIR-3 regulates the RNA polymerase III-associated transcription of small non-coding RNAs. This regulation is lost in the presence of polyglutamine, which mislocalizes MOAG-2/LIR-3 from the nucleus to the cytosol. We then show biochemically that MOAG-2/LIR-3 can also catalyze the aggregation of polyglutamine-expanded huntingtin. These results suggest that polyglutamine can induce an aggregation-promoting activity of MOAG-2/LIR-3 in the cytosol. The concept that certain aggregation-prone proteins can convert other endogenous proteins into drivers of aggregation and toxicity adds to the understanding of how cellular homeostasis can be deteriorated in protein misfolding diseases.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Doenças Neurodegenerativas/enzimologia , Peptídeos/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas , RNA Polimerase III/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/enzimologia , Citosol/enzimologia , Modelos Animais de Doenças , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , RNA Polimerase III/genética , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
2.
Neuron ; 81(3): 561-73, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24440228

RESUMO

The ability of injured axons to regenerate declines with age, yet the mechanisms that regulate axon regeneration in response to age are not known. Here we show that axon regeneration in aging C. elegans motor neurons is inhibited by the conserved insulin/IGF1 receptor DAF-2. DAF-2's function in regeneration is mediated by intrinsic neuronal activity of the forkhead transcription factor DAF-16/FOXO. DAF-16 regulates regeneration independently of lifespan, indicating that neuronal aging is an intrinsic, neuron-specific, and genetically regulated process. In addition, we found that DAF-18/PTEN inhibits regeneration independently of age and FOXO signaling via the TOR pathway. Finally, DLK-1, a conserved regulator of regeneration, is downregulated by insulin/IGF1 signaling, bound by DAF-16 in neurons, and required for both DAF-16- and DAF-18-mediated regeneration. Together, our data establish that insulin signaling specifically inhibits regeneration in aging adult neurons and that this mechanism is independent of PTEN and TOR.


Assuntos
Envelhecimento/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Degeneração Neural/fisiopatologia , Regeneração Nervosa/fisiologia , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Humanos , Imunossupressores/farmacologia , Fator de Crescimento Insulin-Like I/genética , Degeneração Neural/genética , Degeneração Neural/patologia , Regeneração Nervosa/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Genome Biol ; 14(1): R5, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23347407

RESUMO

BACKGROUND: The tumor suppressor Rb/E2F regulates gene expression to control differentiation in multiple tissues during development, although how it directs tissue-specific gene regulation in vivo is poorly understood. RESULTS: We determined the genome-wide binding profiles for Caenorhabditis elegans Rb/E2F-like components in the germline, in the intestine and broadly throughout the soma, and uncovered highly tissue-specific binding patterns and target genes. Chromatin association by LIN-35, the C. elegans ortholog of Rb, is impaired in the germline but robust in the soma, a characteristic that might govern differential effects on gene expression in the two cell types. In the intestine, LIN-35 and the heterochromatin protein HPL-2, the ortholog of Hp1, coordinately bind at many sites lacking E2F. Finally, selected direct target genes contribute to the soma-to-germline transformation of lin-35 mutants, including mes-4, a soma-specific target that promotes H3K36 methylation, and csr-1, a germline-specific target that functions in a 22G small RNA pathway. CONCLUSIONS: In sum, identification of tissue-specific binding profiles and effector target genes reveals important insights into the mechanisms by which Rb/E2F controls distinct cell fates in vivo.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Fatores de Transcrição E2F/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Mucosa Intestinal/metabolismo , Especificidade de Órgãos , Proteínas Repressoras/genética , Transcrição Gênica
4.
Proc Natl Acad Sci U S A ; 108(31): 12805-10, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21768382

RESUMO

Regulation of histone methylation levels has long been implicated in multiple cellular processes, many of which involve transcription. Here, however, we report a unique role for the Caenorhabditis elegans histone demethylase SPR-5 in meiotic DNA double-strand break repair (DSBR). SPR-5 shows enzymatic activity toward H3K4me2 both in vitro and in the nematode germline, and spr-5 mutants show several phenotypes indicating a perturbation of DSBR, including increased p53-dependent germ cell apoptosis, increased levels of the DSBR marker RAD-51, and sensitivity toward DSB-inducing treatments. spr-5 mutants show no transcriptional misregulation of known DSBR involved genes. Instead, SPR-5 shows a rapid subcellular relocalization upon DSB-inducing treatment, which suggests that SPR-5 may function directly in DSBR.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Reparo do DNA , Meiose/genética , Oxirredutases N-Desmetilantes/genética , Animais , Animais Geneticamente Modificados , Antineoplásicos Fitogênicos/toxicidade , Apoptose/genética , Western Blotting , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Camptotecina/toxicidade , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Perfilação da Expressão Gênica , Células Germinativas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilação , Microscopia de Fluorescência , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredutases N-Desmetilantes/metabolismo , Interferência de RNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Mech Dev ; 128(3-4): 178-90, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21277975

RESUMO

The kinase VRK1 has been implicated in mitotic and meiotic progression in invertebrate species, but whether it mediates these events during mammalian gametogenesis is not completely understood. Previous work has demonstrated a role for mammalian VRK1 in proliferation of male spermatogonia, yet whether VRK1 plays a role in meiotic progression, as seen in Drosophila, has not been determined. Here, we have established a mouse strain bearing a gene trap insertion in the VRK1 locus that disrupts Vrk1 expression. In addition to the male proliferation defects, we find that reduction of VRK1 activity causes a delay in meiotic progression during oogenesis, results in the presence of lagging chromosomes during formation of the metaphase plate, and ultimately leads to the failure of oocytes to be fertilized. The activity of at least one phosphorylation substrate of VRK1, p53, is not required for these defects. These results are consistent with previously defined functions of VRK1 in meiotic progression in Drosophila oogenesis, and indicate a conserved role for VRK1 in coordinating proper chromosomal configuration in female meiosis.


Assuntos
Meiose , Oogênese , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Cromossomos de Mamíferos/fisiologia , Feminino , Histonas/metabolismo , Infertilidade Feminina/genética , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutagênese Insercional , Oócitos/fisiologia , Tamanho do Órgão , Especificidade de Órgãos , Ovário/metabolismo , Ovário/patologia , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Epitélio Seminífero/anormalidades , Espermatogênese , Testículo/metabolismo , Testículo/patologia , Proteína Supressora de Tumor p53/metabolismo
6.
Dev Biol ; 344(2): 1011-25, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20599896

RESUMO

Proliferating germ cells in Caenorhabditiselegans provide a useful model system for deciphering fundamental mechanisms underlying the balance between proliferation and differentiation. Using gene expression profiling, we identified approximately 200 genes upregulated in the proliferating germ cells of C. elegans. Functional characterization using RNA-mediated interference demonstrated that over forty of these factors are required for normal germline proliferation and development. Detailed analysis of two of these factors defined an important regulatory relationship controlling germ cell proliferation. We established that the kinase VRK-1 is required for normal germ cell proliferation, and that it acts in part to regulate CEP-1(p53) activity. Loss of cep-1 significantly rescued the proliferation defects of vrk-1 mutants. We suggest that VRK-1 prevents CEP-1 from triggering an inappropriate cell cycle arrest, thereby promoting germ cell proliferation. This finding reveals a previously unsuspected mechanism for negative regulation of p53 activity in germ cells to control proliferation.


Assuntos
Caenorhabditis elegans , Células Germinativas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células , Perfilação da Expressão Gênica , Genes p53 , Genoma , Células Germinativas/citologia , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Interferência de RNA , Regulação para Cima
7.
PLoS Genet ; 4(8): e1000181, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18725931

RESUMO

The nucleolus has shown to be integral for many processes related to cell growth and proliferation. Stem cells in particular are likely to depend upon nucleolus-based processes to remain in a proliferative state. A highly conserved nucleolar factor named nucleostemin is proposed to be a critical link between nucleolar function and stem-cell-specific processes. Currently, it is unclear whether nucleostemin modulates proliferation by affecting ribosome biogenesis or by another nucleolus-based activity that is specific to stem cells and/or highly proliferating cells. Here, we investigate nucleostemin (nst-1) in the nematode C. elegans, which enables us to examine nst-1 function during both proliferation and differentiation in vivo. Like mammalian nucleostemin, the NST-1 protein is localized to the nucleolus and the nucleoplasm; however, its expression is found in both differentiated and proliferating cells. Global loss of C. elegans nucleostemin (nst-1) leads to a larval arrest phenotype due to a growth defect in the soma, while loss of nst-1 specifically in the germ line causes germline stem cells to undergo a cell cycle arrest. nst-1 mutants exhibit reduced levels of rRNAs, suggesting defects in ribosome biogenesis. However, NST-1 is generally not present in regions of the nucleolus where rRNA transcription and processing occurs, so this reduction is likely secondary to a different defect in ribosome biogenesis. Transgenic studies indicate that NST-1 requires its N-terminal domain for stable expression and both its G1 GTPase and intermediate domains for proper germ line function. Our data support a role for C. elegans nucleostemin in cell growth and proliferation by promoting ribosome biogenesis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Divisão Celular , Larva/crescimento & desenvolvimento , Proteínas Nucleares/metabolismo , Células-Tronco/citologia , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proliferação de Células , Proteínas do Citoesqueleto , Feminino , Larva/citologia , Larva/genética , Larva/metabolismo , Masculino , Camundongos , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Ribossomos/genética , Ribossomos/metabolismo , Espermatozoides/química , Espermatozoides/citologia , Espermatozoides/metabolismo , Células-Tronco/química , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Mol Cell ; 18(4): 483-90, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15893731

RESUMO

Class I histone deacetylases (HDACs) repress transcription by deacetylating histones and have been shown to play crucial roles in mouse, Xenopus, zebrafish, and C. elegans development. To identify the molecular networks regulated by a class I HDAC in a multicellular organism, we carried out a global gene expression profiling study using C. elegans embryos, and identified tissue-specific and extracellular matrix (ECM)-related genes as major HDA-1 targets. Ectopic expression of HDA-1 or C. elegans cystatin, an HDA-1 target identified from the microarray, significantly perturbed mammalian cell invasion. Similarly, RNAi depletion or overexpression of human HDAC-1 also affected cell migration. These findings suggest that HDA-1/HDAC-1 may play a critical, evolutionarily conserved role in regulating the extracellular microenvironment. Because human HDACs are targets for cancer therapy, these findings have significant implications in cancer treatment.


Assuntos
Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histona Desacetilases/fisiologia , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Movimento Celular/fisiologia , Matriz Extracelular/genética , Histona Desacetilases/genética , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Dev Cell ; 5(3): 451-62, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12967564

RESUMO

The transition from egg to embryo occurs in the absence of transcription yet requires significant changes in gene activity. Here, we show that the C. elegans DYRK family kinase MBK-2 coordinates the degradation of several maternal proteins, and is essential for zygotes to complete cytokinesis and pattern the first embryonic axis. In mbk-2 mutants, the meiosis-specific katanin subunits MEI-1 and MEI-2 persist during mitosis and the first mitotic division fails. mbk-2 is also required for posterior enrichment of the germ plasm before the first cleavage, and degradation of germ plasm components in anterior cells after cleavage. MBK-2 distribution changes dramatically after fertilization during the meiotic divisions, and this change correlates with activation of mbk-2-dependent processes. We propose that MBK-2 functions as a temporal regulator of protein stability, and that coordinate activation of maternal protein degradation is one of the mechanisms that drives the transition from symmetric egg to patterned embryo.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Óvulo/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/fisiologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/isolamento & purificação , Proteínas de Transporte/metabolismo , Cromatina/metabolismo , Clonagem Molecular/métodos , Imunofluorescência/instrumentação , Imunofluorescência/métodos , Meiose/genética , Microtúbulos/metabolismo , Mitose/genética , Proteínas Nucleares/metabolismo , Plasma/metabolismo , Proteínas Serina-Treonina Quinases/classificação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/classificação , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/isolamento & purificação , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Quinases Dyrk
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA