Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell ; 184(3): 655-674.e27, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497611

RESUMO

Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA Helicases/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Esclerose Tuberosa/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/química , Evolução Molecular , Feminino , Humanos , Insulina/farmacologia , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose/química , RNA Helicases/química , Proteínas com Motivo de Reconhecimento de RNA/química , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(16): 4326-31, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27051065

RESUMO

Nuclear factor kappa B (NF-κB) is an inducible transcription factor that plays critical roles in immune and stress responses and is often implicated in pathologies, including chronic inflammation and cancer. Although much has been learned about NF-κB-activating pathways, the specific repression of NF-κB is far less well understood. Here we identified the type I protein arginine methyltransferase 1 (PRMT1) as a restrictive factor controlling TNFα-induced activation of NF-κB. PRMT1 forms a cellular complex with NF-κB through direct interaction with the Rel homology domain of RelA. We demonstrate that PRMT1 methylates RelA at evolutionary conserved R30, located in the DNA-binding L1 loop, which is a critical residue required for DNA binding. Asymmetric R30 dimethylation inhibits the binding of RelA to DNA and represses NF-κB target genes in response to TNFα. Molecular dynamics simulations of the DNA-bound RelA:p50 predicted structural changes in RelA caused by R30 methylation or a mutation that interferes with the stability of the DNA-NF-κB complex. Our findings provide evidence for the asymmetric arginine dimethylation of RelA and unveil a unique mechanism controlling TNFα/NF-κB signaling.


Assuntos
Arginina/análogos & derivados , Transdução de Sinais/fisiologia , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Arginina/genética , Arginina/metabolismo , Linhagem Celular , Humanos , Metilação , Camundongos , Camundongos Knockout , Simulação de Dinâmica Molecular , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/genética
3.
J Biol Chem ; 278(38): 36139-47, 2003 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-12853456

RESUMO

Aberrant folding of the mammalian prion protein (PrP) is linked to prion diseases in humans and animals. We show that during post-translational targeting of PrP to the endoplasmic reticulum (ER) the putative transmembrane domain induces misfolding of PrP in the cytosol and interferes with its import into the ER. Unglycosylated and misfolded PrP with an uncleaved N-terminal signal sequence associates with ER membranes, and, moreover, decreases cell viability. PrP expressed in the cytosol, lacking the N-terminal ER targeting sequence, also adopts a misfolded conformation; however, this has no adverse effect on cell growth. PrP processing, productive ER import, and cellular viability can be restored either by deleting the putative transmembrane domain or by using a N-terminal signal sequence specific for co-translational ER import. Our study reveals that the putative transmembrane domain features in the formation of misfolded PrP conformers and indicates that post-translational targeting of PrP to the ER can decrease cell viability.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Príons/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Western Blotting , Divisão Celular , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Citosol/metabolismo , Relação Dose-Resposta a Droga , Glicosídeo Hidrolases/metabolismo , Glicosilação , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Biossíntese de Proteínas , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Transporte Proteico
4.
Traffic ; 4(5): 313-22, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12713659

RESUMO

N-linked glycans with complex structure have a major role in the biological activity of a wide variety of cell surface and secreted glycoproteins. Here, we show that geldanamycin, an inhibitor of Hsp90, interferes with the formation of complex glycosylated mammalian prion protein (PrPC). Similarly to inhibitors of alpha-mannosidases, geldanamycin stabilized a high mannose PrPC glycoform and prevented the subsequent processing into complex structures. Moreover, a PrP/Grp94 complex could be isolated from geldanamycin-treated cells, suggesting that Grp94 might play a role in the processing of PrPC in the endoplasmic reticulum. Inhibition of complex glycosylation did not interfere with the glycosylphosphatidylinositol (GPI) anchor attachment and cellular trafficking of high mannose PrPC to the outer leaflet of the plasma membrane. In scrapie-infected neuroblastoma cells, however, high mannose PrPC glycoforms were preferred substrates for the formation of PrP-scrapie (PrPSc). Our study reveals that complex glycosylation is dispensable for the cellular trafficking of PrPC, but modulates the formation of PrPSc.


Assuntos
Manose/metabolismo , Proteínas PrPSc/metabolismo , Animais , Benzoquinonas , Inibidores Enzimáticos/farmacologia , Glicosilação/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Lactamas Macrocíclicas , Proteínas de Membrana/metabolismo , Camundongos , Proteínas PrPSc/efeitos dos fármacos , Quinonas/farmacologia
5.
J Biol Chem ; 278(17): 14961-70, 2003 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-12556465

RESUMO

Misfolding of the mammalian prion protein (PrP) is implicated in the pathogenesis of prion diseases. We analyzed wild type PrP in comparison with different PrP mutants and identified determinants of the in vivo folding pathway of PrP. The complete N terminus of PrP including the putative transmembrane domain and the first beta-strand could be deleted without interfering with PrP maturation. Helix 1, however, turned out to be a major determinant of PrP folding. Disruption of helix 1 prevented attachment of the glycosylphosphatidylinositol (GPI) anchor and the formation of complex N-linked glycans; instead, a high mannose PrP glycoform was secreted into the cell culture supernatant. In the absence of a C-terminal membrane anchor, however, helix 1 induced the formation of unglycosylated and partially protease-resistant PrP aggregates. Moreover, we could show that the C-terminal GPI anchor signal sequence, independent of its role in GPI anchor attachment, mediates core glycosylation of nascent PrP. Interestingly, conversion of high mannose glycans to complex type glycans only occurred when PrP was membrane-anchored. Our study indicates a bipartite function of helix 1 in the maturation and aggregation of PrP and emphasizes a critical role of a membrane anchor in the formation of complex glycosylated PrP.


Assuntos
Proteínas PrPC/química , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Animais , Membrana Celular/química , Glicosilação , Glicosilfosfatidilinositóis , Manose , Camundongos , Polissacarídeos/biossíntese , Polissacarídeos/química , Proteínas PrPC/biossíntese , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA