Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38675152

RESUMO

Severe loss of bone mass may require grafting, and, among the alternatives available, there are natural biomaterials that can act as scaffolds for the cell growth necessary for tissue regeneration. Collagen and elastin polymers are a good alternative due to their biomimetic properties of bone tissue, and their characteristics can be improved with the addition of polysaccharides such as chitosan and bioactive compounds such as jatoba resin and pomegranate extract due to their antigenic actions. The aim of this experimental protocol was to evaluate bone neoformation in experimentally made defects in the mandible of rats using polymeric scaffolds with plant extracts added. Thirty rats were divided into group 1, with a mandibular defect filled with a clot from the lesion and no graft implant (G1-C, n = 10); group 2, filled with collagen/chitosan/jatoba resin scaffolds (G2-CCJ, n = 10); and group 3, with collagen/nanohydroxyapatite/elastin/pomegranate extract scaffolds (G3-CHER, n = 10). Six weeks after surgery, the animals were euthanized and samples from the surgical areas were submitted to macroscopic, radiological, histological, and morphometric analysis of the mandibular lesion repair process. The results showed no inflammatory infiltrates in the surgical area, indicating good acceptance of the scaffolds in the microenvironment of the host area. In the control group (G1), there was a predominance of reactive connective tissue, while in the grafted groups (G2 and G3), there was bone formation from the margins of the lesion, but it was still insufficient for total bone repair of the defect within the experimental period standardized in this study. The histomorphometric analysis showed that the mean percentage of bone volume formed in the surgical area of groups G1, G2, and G3 was 17.17 ± 2.68, 27.45 ± 1.65, and 34.07 ± 0.64 (mean ± standard deviation), respectively. It can be concluded that these scaffolds with plant extracts added can be a viable alternative for bone repair, as they are easily manipulated, have a low production cost, and stimulate the formation of new bone by osteoconduction.

2.
Bioengineering (Basel) ; 11(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38247955

RESUMO

Biomaterials are used extensively in graft procedures to correct bone defects, interacting with the body without causing adverse reactions. The aim of this pre-clinical study was to analyze the effects of photobiomodulation therapy (PBM) with the use of a low-level laser in the repair process of bone defects filled with inorganic matrix (IM) associated with heterologous fibrin biopolymer (FB). A circular osteotomy of 4 mm in the left tibia was performed in 30 Wistar male adult rats who were randomly divided into three groups: G1 = IM + PBM, G2 = IM + FB and G3 = IM + FB + PBM. PBM was applied at the time of the experimental surgery and three times a week, on alternate days, until euthanasia, with 830 nm wavelength, in two points of the operated site. Five animals from each group were euthanized 14 and 42 days after surgery. In the histomorphometric analysis, the percentage of neoformed bone tissue in G3 (28.4% ± 2.3%) was higher in relation to G1 (24.1% ± 2.91%) and G2 (22.2% ± 3.11%) at 14 days and at 42 days, the percentage in G3 (35.1% ± 2.55%) was also higher in relation to G1 (30.1% ± 2.9%) and G2 (31.8% ± 3.12%). In the analysis of the birefringence of collagen fibers, G3 showed a predominance of birefringence between greenish-yellow in the neoformed bone tissue after 42 days, differing from the other groups with a greater presence of red-orange fibers. Immunohistochemically, in all experimental groups, it was possible to observe immunostaining for osteocalcin (OCN) near the bone surface of the margins of the surgical defect and tartrate-resistant acid phosphatase (TRAP) bordering the newly formed bone tissue. Therefore, laser photobiomodulation therapy contributed to improving the bone repair process in tibial defects filled with bovine biomaterial associated with fibrin biopolymer derived from snake venom.

3.
J. venom. anim. toxins incl. trop. dis ; 30: e20230093, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1558352

RESUMO

Abstract Background: In this experimental protocol, we evaluated the immediate and delayed repair of the buccal branch of the facial nerve (BBFN) with heterologous fibrin biopolymer (HFB) as a coaptation medium and the use of photobiomodulation (PBM), performing functional and histomorphometric analysis of the BBFN and perioral muscles. Methods: Twenty-eight rats were divided into eight groups using the BBFN bilaterally (the left nerve was used for PBM), namely: G1 - control group, right BBFN (without injury); G2 - control group, left BBFN (without injury + PBM); G3 - Denervated right BBFN (neurotmesis); G4 - Denervated left BBFN (neurotmesis + PBM); G5 - Immediate repair of right BBFN (neurotmesis + HFB); G6 - Immediate repair of left BBFN (neurotmesis + HFB + PBM); G7 - Delayed repair of right BBFN (neurotmesis + HFB); G8 - Delayed repair of left BBFN (neurotmesis + HFB + PBM). Delayed repair occurred after two weeks of denervation. All animals were sacrificed after six weeks postoperatively. Results: In the parameters of the BBFN, we observed inferior results in the groups with delayed repair, in relation to the groups with immediate repair, with a significant difference (p < 0.05) in the diameter of the nerve fiber, the axon, and the thickness of the myelin sheath of the group with immediate repair with PBM compared to the other experimental groups. In measuring the muscle fiber area, groups G7 (826.4 ± 69.90) and G8 (836.7 ± 96.44) were similar to G5 (882.8 ± 70.51). In the functional analysis, the G7 (4.10 ± 0.07) and G8 (4.12 ± 0.08) groups presented normal parameters. Conclusion: We demonstrated that delayed repair of BBFN is possible with HFB, but with worse results compared to immediate repair, and that PBM has a positive influence on nerve regeneration results in immediate repair.

4.
Antibiotics (Basel) ; 12(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37887181

RESUMO

Cholelithiasis has a major impact on global health and affects an average of 20% of the Western population. The main risk factors are females, age over 40 years, obesity and pregnancy. Most of the time it is asymptomatic, but when there are symptoms, they are generally nonspecific. Bile was considered sterile, but today it is known that it contains a complex bacterial flora, which causes biofilm in the gallbladder and gallstones. Among the main bacteria associated with cholelithiasis are Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, species of Enterococcus spp. and Acinetobacter spp. Antibiotic prophylaxis is used in an attempt to reduce postoperative infections, especially at the surgical site. However, some authors found no relationship between the use of antibiotic prophylaxis and a lower risk of surgical site infection. Thus, the aim of this double-blind randomized clinical trial was to compare the existence or not of bacteriobilia in patients at low anesthetic risk who underwent videolaparoscopic cholecystectomy, and its correlation with the use of prophylactic antibiotics. This study included 40 patients between 18 and 65 years old, diagnosed with cholelithiasis, symptomatic or not, with low anesthetic risk classified by the American Society of Anesthesiology in ASA I or ASA II, without complications or previous manipulation of the bile duct, who underwent elective video cholecystectomy, divided into two groups: Experimental Group A (n = 20), which received 2 g of Cephalotin (first-generation Cephalosporin, Keflin®, ABL antibiotics, Cosmópolis, Brazil) during anesthetic induction, and Control Group B (n = 20), where no antibiotics were administered until bile collection. After the procedure, a bile sample was collected and culture and antibiogram were performed. In the sample, 22 (55%) were classified as ASA I and 18 (45%) as ASA II. It was observed that 81.8% of the patients who had a positive culture did not use antibiotics, against 18.2% of those who used prophylaxis. When comparing patients regarding anesthetic risk, ASA I patients had a positive culture in 9.1% of cases, against 90.9% in patients classified as ASA II. It was concluded that patients with higher anesthetic risk (ASA II) have a higher chance of bacteriobilia and benefit from antibiotic prophylaxis when compared to patients with lower anesthetic risk (ASA I).

5.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615601

RESUMO

Extending the range of use of the heterologous fibrin biopolymer, this pre-clinical study showed a new proportionality of its components directed to the formation of scaffold with a lower density of the resulting mesh to facilitate the infiltration of bone cells, and combined with therapy by laser photobiomodulation, in order to accelerate the repair process and decrease the morphofunctional recovery time. Thus, a transoperative protocol of laser photobiomodulation (L) was evaluated in critical bone defects filled with deproteinized bovine bone particles (P) associated with heterologous fibrin biopolymer (HF). The groups were: BCL (blood clot + laser); HF; HFL; PHF (P+HF); PHFL (P+HF+L). Microtomographically, bone volume (BV) at 14 days, was higher in the PHF and PHFL groups (10.45 ± 3.31 mm3 and 9.94 ± 1.51 mm3), significantly increasing in the BCL, HFL and PHFL groups. Histologically, in all experimental groups, the defects were not reestablished either in the external cortical bone or in the epidural, occurring only in partial bone repair. At 42 days, the bone area (BA) increased in all groups, being significantly higher in the laser-treated groups. The quantification of bone collagen fibers showed that the percentage of collagen fibers in the bone tissue was similar between the groups for each experimental period, but significantly higher at 42 days (35.71 ± 6.89%) compared to 14 days (18.94 ± 6.86%). It can be concluded that the results of the present study denote potential effects of laser radiation capable of inducing functional bone regeneration, through the synergistic combination of biomaterials and the new ratio of heterologous fibrin biopolymer components (1:1:1) was able to make the resulting fibrin mesh less dense and susceptible to cellular permeability. Thus, the best fibrinogen concentration should be evaluated to find the ideal heterologous fibrin scaffold.


Assuntos
Matriz Óssea , Fibrina , Ratos , Animais , Bovinos , Fibrina/uso terapêutico , Ratos Wistar , Regeneração Óssea , Lasers , Bioengenharia , Colágeno , Alicerces Teciduais
6.
Artigo em Inglês | MEDLINE | ID: mdl-35261617

RESUMO

Background: The association of scaffolds to repair extensive bone defects can contribute to their evolution and morphophysiological recomposition. The incorporation of particulate biomaterials into three-dimensional fibrin bioproducts together with photobiomodulation therapy (PBM) has potential and can improve regenerative medicine procedures. The objective of this experiment was to evaluate the effects of PBM therapy on critical size defects filled with xenogenic bone substitute associated with fibrin biopolymer. Methods: A critical defect of 8 mm was performed in 36 Wistar male adult rats that were divided into four groups. Groups BC and BC-PBM were defined as controls with defects filled by a clot (without or with PBM, respectively) and groups XS and XS-PBM that comprised those filled with biocomplex Bio-OssTM in association with fibrin biopolymer. PBM was applied immediately after the surgery and three times a week every other day, with the parameters: wavelength of 830 nm, energy density 6.2 J/cm2, output power 30 mW, beam area of 0.116 cm2, irradiance 0.258,62 W/cm2, energy/point 0.72 J, total energy 2.88 J. Fourteen and 42 days after the surgery, animals were euthanatized and subjected to microtomography, qualitative and quantitative histological analysis. Results: The BC-PBM and XS-PBM groups had a similar evolution in the tissue repair process, with a higher density of the volume of new formed bone in relation to the groups without PBM (p = 0.04086; p = 0.07093, respectively). Intense vascular proliferation and bone deposition around the biomaterial particles were observed in the animals of the groups in which biocomplex was applied (XS and XS-PBM). Conclusion: PBM therapy allowed an improvement in the formation of new bone, with a more organized deposition of collagen fibers in the defect area. Biocomplex favored the insertion and permanence of the particulate material in bone defects, creating a favorable microenvironment for accelerate repair process.

7.
Cells ; 11(2)2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35053336

RESUMO

Cell-based therapy is a promising treatment to favor tissue healing through less invasive strategies. Mesenchymal stem cells (MSCs) highlighted as potential candidates due to their angiogenic, anti-apoptotic and immunomodulatory properties, in addition to their ability to differentiate into several specialized cell lines. Cells can be carried through a biological delivery system, such as fibrin glue, which acts as a temporary matrix that favors cell-matrix interactions and allows local and paracrine functions of MSCs. Thus, the aim of this systematic review was to evaluate the potential of fibrin glue combined with MSCs in nerve regeneration. The bibliographic search was performed in the PubMed/MEDLINE, Web of Science and Embase databases, using the descriptors ("fibrin sealant" OR "fibrin glue") AND "stem cells" AND "nerve regeneration", considering articles published until 2021. To compose this review, 13 in vivo studies were selected, according to the eligibility criteria. MSCs favored axonal regeneration, remyelination of nerve fibers, as well as promoted an increase in the number of myelinated fibers, myelin sheath thickness, number of axons and expression of growth factors, with significant improvement in motor function recovery. This systematic review showed clear evidence that fibrin glue combined with MSCs has the potential to regenerate nervous system lesions.


Assuntos
Adesivo Tecidual de Fibrina/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Regeneração Nervosa/efeitos dos fármacos , Tecido Nervoso/lesões , Humanos , Modelos Biológicos , Tecido Nervoso/efeitos dos fármacos , Tecido Nervoso/fisiopatologia
8.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484791

RESUMO

Abstract Background: The association of scaffolds to repair extensive bone defects can contribute to their evolution and morphophysiological recomposition. The incorporation of particulate biomaterials into three-dimensional fibrin bioproducts together with photobiomodulation therapy (PBM) has potential and can improve regenerative medicine procedures. The objective of this experiment was to evaluate the effects of PBM therapy on critical size defects filled with xenogenic bone substitute associated with fibrin biopolymer. Methods: A critical defect of 8 mm was performed in 36 Wistar male adult rats that were divided into four groups. Groups BC and BC-PBM were defined as controls with defects filled by a clot (without or with PBM, respectively) and groups XS and XS-PBM that comprised those filled with biocomplex Bio-OssTM in association with fibrin biopolymer. PBM was applied immediately after the surgery and three times a week every other day, with the parameters: wavelength of 830 nm, energy density 6.2 J/cm2, output power 30 mW, beam area of 0.116 cm2, irradiance 0.258,62 W/cm2, energy/point 0.72 J, total energy 2.88 J. Fourteen and 42 days after the surgery, animals were euthanatized and subjected to microtomography, qualitative and quantitative histological analysis. Results: The BC-PBM and XS-PBM groups had a similar evolution in the tissue repair process, with a higher density of the volume of new formed bone in relation to the groups without PBM (p = 0.04086; p = 0.07093, respectively). Intense vascular proliferation and bone deposition around the biomaterial particles were observed in the animals of the groups in which biocomplex was applied (XS and XS-PBM). Conclusion: PBM therapy allowed an improvement in the formation of new bone, with a more organized deposition of collagen fibers in the defect area. Biocomplex favored the insertion and permanence of the particulate material in bone defects, creating a favorable microenvironment for accelerate repair process.

9.
J. venom. anim. toxins incl. trop. dis ; 28: e20210056, 2022. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1360567

RESUMO

The association of scaffolds to repair extensive bone defects can contribute to their evolution and morphophysiological recomposition. The incorporation of particulate biomaterials into three-dimensional fibrin bioproducts together with photobiomodulation therapy (PBM) has potential and can improve regenerative medicine procedures. The objective of this experiment was to evaluate the effects of PBM therapy on critical size defects filled with xenogenic bone substitute associated with fibrin biopolymer. Methods: A critical defect of 8 mm was performed in 36 Wistar male adult rats that were divided into four groups. Groups BC and BC-PBM were defined as controls with defects filled by a clot (without or with PBM, respectively) and groups XS and XS-PBM that comprised those filled with biocomplex Bio-OssTM in association with fibrin biopolymer. PBM was applied immediately after the surgery and three times a week every other day, with the parameters: wavelength of 830 nm, energy density 6.2 J/cm2, output power 30 mW, beam area of 0.116 cm2, irradiance 0.258,62 W/cm2, energy/point 0.72 J, total energy 2.88 J. Fourteen and 42 days after the surgery, animals were euthanatized and subjected to microtomography, qualitative and quantitative histological analysis. Results: The BC-PBM and XS-PBM groups had a similar evolution in the tissue repair process, with a higher density of the volume of new formed bone in relation to the groups without PBM (p = 0.04086; p = 0.07093, respectively). Intense vascular proliferation and bone deposition around the biomaterial particles were observed in the animals of the groups in which biocomplex was applied (XS and XS-PBM). Conclusion: PBM therapy allowed an improvement in the formation of new bone, with a more organized deposition of collagen fibers in the defect area. Biocomplex favored the insertion and permanence of the particulate material in bone defects, creating a favorable microenvironment for accelerate repair process.(AU)


Assuntos
Materiais Biocompatíveis , Biopolímeros , Colágeno , Terapia com Luz de Baixa Intensidade
10.
Cells ; 10(9)2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-34571972

RESUMO

Cell therapy strategies using mesenchymal stem cells (MSCs) carried in fibrin glue have shown promising results in regenerative medicine. MSCs are crucial for tissue healing because they have angiogenic, anti-apoptotic and immunomodulatory properties, in addition to the ability to differentiate into several specialized cell lines. Fibrin sealant or fibrin glue is a natural polymer involved in the coagulation process. Fibrin glue provides a temporary structure that favors angiogenesis, extracellular matrix deposition and cell-matrix interactions. Additionally, fibrin glue maintains the local and paracrine functions of MSCs, providing tissue regeneration through less invasive clinical procedures. Thus, the objective of this systematic review was to assess the potential of fibrin glue combined with MSCs in bone or cartilage regeneration. The bibliographic search was performed in the PubMed/MEDLINE, LILACS and Embase databases, using the descriptors ("fibrin sealant" OR "fibrin glue") AND "stem cells" AND "bone regeneration", considering articles published until 2021. In this case, 12 preclinical and five clinical studies were selected to compose this review, according to the eligibility criteria. In preclinical studies, fibrin glue loaded with MSCs, alone or associated with bone substitute, significantly favored bone defects regeneration compared to scaffold without cells. Similarly, fibrin glue loaded with MSCs presented considerable potential to regenerate joint cartilage injuries and multiple bone fractures, with significant improvement in clinical parameters and absence of postoperative complications. Therefore, there is clear evidence in the literature that fibrin glue loaded with MSCs, alone or combined with bone substitute, is a promising strategy for treating lesions in bone or cartilaginous tissue.


Assuntos
Regeneração Óssea , Condrogênese , Adesivo Tecidual de Fibrina/uso terapêutico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Medicina Regenerativa , Alicerces Teciduais , Animais , Adesivo Tecidual de Fibrina/efeitos adversos , Humanos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Modelos Animais , Coelhos , Ratos , Resultado do Tratamento , Cicatrização
11.
Materials (Basel) ; 12(24)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817369

RESUMO

The use of low-level laser therapy (LLLT) with biomodulatory effects on biological tissues, currently called photobiomodulation therapy (PBMT), assists in healing and reduces inflammation. The application of biomaterials has emerged in bone reconstructive surgery, especially the use of bovine bone due to its biocompatibility. Due to the many benefits related to the use of PBMT and bovine bones, the aim of this research was to review the literature to verify the relationship between PBMT and the application of bovine bone in bone reconstruction surgeries. We chose the PubMed/MEDLINE, Web of Science, and Scopus databases for the search by matching the keywords: "Bovine bone AND low-level laser therapy", "Bovine bone AND photobiomodulation therapy", "Xenograft AND low-level laser therapy", and "Xenograft AND photobiomodulation therapy". The initial search of the three databases retrieved 240 articles, 18 of which met all inclusion criteria. In the studies concerning animals (17 in total), there was evidence of PBMT assisting in biomaterial-related conduction, formation of new bone, bone healing, immunomarker expression, increasing collagen fibers, and local inflammation reduction. However, the results disagreed with regard to the resorption of biomaterial particles. The only human study showed that PBMT with bovine bone was effective for periodontal regeneration. It was concluded that PBMT assists the process in bone reconstruction when associated with bovine bone, despite divergences between applied protocols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA