Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Water Res ; 259: 121865, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38851111

RESUMO

The phototrophic capability of Candidatus Accumulibacter (Accumulibacter), a common polyphosphate accumulating organism (PAO) in enhanced biological phosphorus removal (EBPR) systems, was investigated in this study. Accumulibacter is phylogenetically related to the purple bacteria Rhodocyclus from the family Rhodocyclaceae, which belongs to the class Betaproteobacteria. Rhodocyclus typically exhibits both chemoheterotrophic and phototrophic growth, however, limited studies have evaluated the phototrophic potential of Accumulibacter. To address this gap, short and extended light cycle tests were conducted using a highly enriched Accumulibacter culture (95%) to evaluate its responses to illumination. Results showed that, after an initial period of adaptation to light conditions (approximately 4-5 h), Accumulibacter exhibited complete phosphorus (P) uptake by utilising polyhydroxyalkanoates (PHA), and additionally by consuming glycogen, which contrasted with its typical aerobic metabolism. Mass, energy, and redox balance analyses demonstrated that Accumulibacter needed to employ phototrophic metabolism to meet its energy requirements. Calculations revealed that the light reactions contributed to the generation of, at least more than 67% of the ATP necessary for P uptake and growth. Extended light tests, spanning 21 days with dark/light cycles, suggested that Accumulibacter generated ATP through light during initial operation, however, it likely reverted to conventional anaerobic/aerobic metabolism under dark/light conditions due to microalgal growth in the mixed culture, contributing to oxygen production. In contrast, extended light tests with an enriched Tetrasphaera culture, lacking phototrophic genes in its genome, clearly demonstrated that phototrophic P uptake did not occur. These findings highlight the adaptive metabolic capabilities of Accumulibacter, enabling it to utilise phototrophic pathways for energy generation during oxygen deprivation, which holds the potential to advance phototrophic-EBPR technology development.


Assuntos
Fósforo , Processos Fototróficos , Fósforo/metabolismo , Betaproteobacteria/metabolismo , Rhodocyclaceae/metabolismo , Luz , Poli-Hidroxialcanoatos/metabolismo , Glicogênio/metabolismo
2.
J Environ Manage ; 334: 117490, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801686

RESUMO

The utilization of non-aerated microalgae-bacterial consortia for phototrophic biological nutrient removal (photo-BNR) has emerged as an alternative to conventional wastewater treatment. Photo-BNR systems are operated under transient illumination, with alternating dark-anaerobic, light-aerobic and dark-anoxic conditions. A deep understanding of the impact of operational parameters on the microbial consortium and respective nutrient removal efficiency in photo-BNR systems is required. The present study evaluates, for the first time, the long-term operation (260 days) of a photo-BNR system, fed with a COD:N:P mass ratio of 7.5:1:1, to understand its operational limitations. In particular, different CO2 concentrations in the feed (between 22 and 60 mg C/L of Na2CO3) and variations of light exposure (from 2.75 h to 5.25 h per 8 h cycle) were studied to determine their impact on key parameters, like oxygen production and availability of polyhydroxyalkanoates (PHA), on the performance of anoxic denitrification by polyphosphate accumulating organisms. Results indicate that oxygen production was more dependent on the light availability than on the CO2 concentration. Also, under operational conditions with a COD:Na2CO3 ratio of 8.3 mg COD/mg C and an average light availability of 5.4 ± 1.3 W h/g TSS, no internal PHA limitation was observed, and 95 ± 7%, 92 ± 5% and 86 ± 5% of removal efficiency could be achieved for phosphorus, ammonia and total nitrogen, respectively. 81 ± 1.7% of the ammonia was assimilated into the microbial biomass and 19 ± 1.7% was nitrified, showing that biomass assimilation was the main N removal mechanism taking place in the bioreactor. Overall, the photo-BNR system presented a good settling capacity (SVI ∼60 mL/g TSS) and was able to remove 38 ± 3.3 mg P/L and 33 ± 1.7 mg N/L, highlighting its potential for achieving wastewater treatment without the need of aeration.


Assuntos
Amônia , Dióxido de Carbono , Águas Residuárias , Nutrientes , Oxigênio , Reatores Biológicos , Fósforo , Nitrogênio , Eliminação de Resíduos Líquidos/métodos , Esgotos , Desnitrificação
3.
Sci Total Environ ; 793: 148501, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171805

RESUMO

Conventional wastewater treatment technologies for biological nutrient removal (BNR) are highly dependent on aeration for oxygen supply, which represents a major operational cost of the process. Recently, phototrophic enhanced biological phosphorus removal (photo-EBPR) has been suggested as an alternative system for phosphorus removal, based on a consortium of photosynthetic microorganisms and chemotrophic bacteria, eliminating the need for costly aeration. However, wastewater treatment plants must couple nitrogen and phosphorus removal to achieve discharge limits. For this reason, a new microalgae-bacterial based system for phosphorus and nitrogen removal is proposed in this work. The photo-BNR system studied here consists of a sequencing batch reactor operated with dark anaerobic, light aerobic, dark anoxic and idle periods, to allow both N and P removal. Results of the study show that the photo-BNR system was able to remove 100% of the 40 mg N/L of ammonia fed to the reactor and 94 ± 3% of the total nitrogen (Influent COD:N ratio of 300:40, similar to domestic wastewater). Moreover, an average of 25 ± 9.2 mg P/L was simultaneously removed in the photo-BNR tests, representing the P removal capacity of this system, which exceeds the level of P removal required from typical domestic wastewater. Full ammonia removal was achieved during the light phase, with 67 ± 5% of this ammonia being assimilated by the microbial culture and the remaining 33 ± 5% being converted into nitrate. The assimilated P corresponded to 2.8 ± 0.23 mg P/L, which only represented, approximately, 1/9 of the P removal capacity of the system. Half of the nitrified ammonia was subsequently denitrified during the dark anoxic phase (50 ± 24%). Overall, the photo-BNR system represents the first treatment alternative for N and P from domestic wastewater with no need of mechanical aeration or supplemental carbon addition, representing an alternative low-energy technology of interest.


Assuntos
Nitrogênio , Fósforo , Reatores Biológicos , Fotossíntese , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias
4.
Bioresour Technol ; 327: 124820, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33578354

RESUMO

The increasing volume of waste streams require new biological technologies that can address pollution concerns while offering sustainable products. Purple phototrophic bacteria (PPB) are very versatile organisms that present a unique metabolism that allows them to adapt to a variety of environments, including the most complex waste streams. Their successful adaptation to such demanding conditions is partly the result of internal polymers accumulation which can be stored for electron/energy balance or as carbon and nutrients reserves for deprivation periods. Polyhydroxyalkanoates, glycogen, sulphur and polyphosphate are examples of polymers produced by PPB that can be economically explored due to their applications in the plastic, energy and fertilizers sectors. Their large-scale production implies the outdoor operation of PPB systems which brings new challenges, identified in this review. An overview of the current PPB polymer producing technologies and prospects for their future development is also provided.


Assuntos
Bactérias , Poli-Hidroxialcanoatos , Biopolímeros , Cor , Proteobactérias
5.
N Biotechnol ; 49: 112-119, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30367994

RESUMO

The phototrophic-enhanced biological phosphorus removal system (photo-EBPR) was recently proposed as an alternative photosynthetic process to conventional phosphorus removal. Previous work showed the possibility of obtaining a photo-EBPR system starting from a culture already enriched in polyphosphate accumulating organisms (PAOs). The present work evaluated whether the same could be achieved starting from conventional activated sludge. A sequencing batch reactor inoculated with sludge from a wastewater treatment plant (WWTP) was fed with a mixture of acetate and propionate (75%:25%) and subjected to dark/light cycles to select a photo-EBPR system containing PAOs and photosynthetic organisms, the oxygen providers for the system. The results showed that it is possible to obtain a photo-EBPR system starting from a WWTP sludge, although the process is slower than when started with a sludge already enriched in PAOs. After 15 days of operation, the system could remove 60 ± 2 mg-P/L of phosphorus (approximately 67% of the concentration at the end of dark period) in the light period, from which 13 ± 1 mg-P/L was removed during the phase without external air supply. These results indicate that a photo-EBPR system can be obtained independently of the seed sludge initially used, provided that a suitable operating strategy is implemented, i.e. by imposing conditions that favour the growth and coexistence of PAOs and photosynthetic microorganisms.


Assuntos
Reatores Biológicos , Luz , Fósforo/isolamento & purificação , Esgotos/química , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Biomassa , Clorofila/análise , Fosfatos/análise
6.
Bioresour Technol ; 247: 829-837, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30060419

RESUMO

The present work assessed the feasibility of used cooking oil as a low cost carbon source for rhamnolipid biosurfactant production employing the strain Burkholderia thailandensis. According to the results, B. thailandensis was able to produce rhamnolipids up to 2.2 g/L, with the dominant congener being the di-rhamnolipid Rha-Rha-C14-C14. Rhamnolipids had the ability to reduce the surface tension to 37.7 mN/m and the interfacial tension against benzene and oleic acid to 4.2 and 1.5 mN/m, while emulsification index against kerosene reached up to 64%. The ability of B. thailandensis to accumulate intracellular biopolymers, in the form of polyhydroxyalkanoates (PHA), was also monitored. Polyhydroxybutyrate (PHB) was accumulated simultaneously and consisted of up to 60% of the cell dry weight. PHB was further characterized in terms of its molecular weight and thermal properties. This is the first study reporting the simultaneous production of polyhydroxyalkanoates and rhamnolipids by the non-pathogen rhamnolipid producer B. thailandensis.


Assuntos
Burkholderia , Glicolipídeos/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Reciclagem , Culinária , Óleos , Pseudomonas aeruginosa
7.
Water Res ; 129: 190-198, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29149674

RESUMO

A novel Phototrophic - Enhanced Biological Phosphorus Removal (Photo-EBPR) system, consisting of a consortium of photosynthetic organisms and polyphosphate accumulating organisms (PAOs), was studied in this work. A sequencing batch reactor was fed with a mixture of acetate and propionate (75%-25%) and subjected to dark/light cycles in order to select a photo-EBPR system containing PAOs and photosynthetic organisms, the latter likely providers of oxygen to the system. The results from the selection period (stage 1) showed that the photo-EBPR culture was capable of performing P release in the dark and P uptake in the presence of light, under limited oxygen concentrations. During the optimization period, the aeration period, which was initially provided at the end of the light phase, was gradually reduced until a non-aerated system was achieved, while the light intensity was increased. After optimization of the operational conditions, the selected consortium of photosynthetic organisms/PAOs showed high capacity of P removal in the light phase in the absence of air or other electron acceptor. A net P removal of 34 ± 3 mg-P/L was achieved, with a volumetric P removal rate of 15 ± 2 mg-P/L.h, and 79 ± 8% of P removal from the system. Also, in limiting oxygen conditions, the P uptake rate was independent of the PHA consumption, which demonstrates that the organisms obtained energy for P removal from light. These results indicated that a photo-EBPR system can be a potential solution for P removal with low COD/P ratios and in the absence of air, prospecting the use of natural sunlight as illumination, which would reduce the costs of EBPR operation regarding aeration.


Assuntos
Betaproteobacteria/metabolismo , Reatores Biológicos , Fósforo/isolamento & purificação , Polifosfatos/metabolismo , Purificação da Água/métodos , Acetatos , Carbonatos/metabolismo , Glicogênio , Oxigênio , Fósforo/metabolismo , Fotossíntese , Propionatos
8.
Water Sci Technol ; 63(2): 352-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21252442

RESUMO

The microbiology of denitrifying enhanced biological phosphorus removal systems has been a subject of much debate. The question has centred on the affinities of different types of Candidatus Accumulibacter PAOs, type I and type II, towards different electron acceptors such as oxygen, nitrate and nitrite. This study used a propionate anaerobic/anoxic/aerobic lab-scale sequencing batch reactor where a microbial culture was successfully enriched in Accumulibacter type I organisms (approx. 90%). The culture was able to take up phosphorus using nitrate, nitrite and oxygen as electron acceptors, although experiments with oxygen led to the fastest P removal rate. The phosphorus uptake to nitrogen consumed ratio (P/N ratio), when using both nitrate and nitrite, was shown to be affected by pH in the range of 7-8.2, achieving higher values for lower pH values (7.0-7.5). The effect of pH on P removal seems to follow a similar trend for both nitrate and nitrite. To our knowledge, this is the first study where the impact of pH in the phosphate removal stoichiometry using the three most significant electron acceptors is shown for such a high enrichment in Accumulibacter type I.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Nitratos/análise , Nitritos/análise , Oxigênio/análise , Polifosfatos/metabolismo , Aclimatação , Aerobiose , Anaerobiose , Desnitrificação , Elétrons , Nitrogênio/metabolismo , Fósforo/metabolismo , Fatores de Tempo
9.
Water Res ; 44(17): 4992-5004, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20650504

RESUMO

In the enhanced biological phosphorus removal (EBPR) process, the competition between polyphosphate accumulating organisms (PAO) and glycogen accumulating organisms (GAO) has been studied intensively in recent years by both microbiologists and engineers, due to its important effects on phosphorus removal performance and efficiency. This study addresses the impact of microbial ecology on assessing the PAO-GAO competition through metabolic modelling, focussing on reviewing recent developments, discussion of how the results from molecular studies can impact the way we model the process, and offering perspectives for future research opportunities based on unanswered questions concerning PAO and GAO metabolism. Indeed, numerous findings that are seemingly contradictory could in fact be explained by the metabolic behaviour of different sub-groups of PAOs and/or GAOs exposed to different environmental and operational conditions. Some examples include the glycolysis pathway (i.e. Embden-Meyerhof-Parnas (EMP) vs. Entner-Doudoroff (ED)), denitrification capacity, anaerobic tricarboxylic acid (TCA) cycle activity and PAOs' ability to adjust their metabolism to e.g. a GAO-like metabolism. Metabolic modelling may further yield far-reaching influences on practical applications as well, and serves as a bridge between molecular/biochemical research studies and the optimisation of wastewater treatment plant operation.


Assuntos
Bactérias/metabolismo , Fenômenos Ecológicos e Ambientais , Glicogênio/metabolismo , Modelos Biológicos , Polifosfatos/metabolismo , Anaerobiose , Ciclo do Ácido Cítrico , Glicólise
10.
Water Res ; 44(15): 4473-86, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20580055

RESUMO

In this study, enhanced biological phosphorus removal (EBPR) metabolic models are expanded in order to incorporate the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) under sequential anaerobic/anoxic/aerobic conditions, which are representative of most full-scale EBPR plants. Since PAOs and GAOs display different denitrification tendencies, which is dependent on the phylogenetic identity of the organism, the model was separated into six distinct biomass groups, constituting Accumulibacter Types I and II, as well as denitrifying and non-denitrifying Competibacter and Defluviicoccus GAOs. Denitrification was modelled as a multi-step process, with nitrate (NO(3)), nitrite (NO(2)), nitrous oxide (N(2)O) and di-nitrogen gas (N(2)) being the primary components. The model was calibrated and validated using literature data from enriched cultures of PAOs and GAOs, obtaining a good description of the observed biochemical transformations. A strong correlation was observed between Accumulibacter Types I and II, and nitrate-reducing and non-nitrate-reducing PAOs, respectively, where the abundance of each PAO subgroup was well predicted by the model during an acclimatization period from anaerobic-aerobic to anaerobic-anoxic conditions. Interestingly, a strong interdependency was observed between the anaerobic, anoxic and aerobic kinetic parameters of PAOs and GAOs. This could be exploited when metabolic models are calibrated, since all of these parameters should be changed by an identical factor from their default value. Factors that influence these kinetic parameters include the fraction of active biomass, relative aerobic/anoxic fraction and the ratio of acetyl-CoA to propionyl-CoA. Employing a metabolic approach was found to be advantageous in describing the performance and population dynamics in such complex microbial ecosystems.


Assuntos
Biodiversidade , Modelos Biológicos , Fósforo/metabolismo , Proteobactérias/metabolismo , Aerobiose , Algoritmos , Alphaproteobacteria/crescimento & desenvolvimento , Alphaproteobacteria/metabolismo , Anaerobiose , Betaproteobacteria/crescimento & desenvolvimento , Betaproteobacteria/metabolismo , Biodegradação Ambiental , Simulação por Computador , Gammaproteobacteria/crescimento & desenvolvimento , Gammaproteobacteria/metabolismo , Glicogênio/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Nitrogênio/metabolismo , Óxido Nitroso/metabolismo , Polifosfatos/metabolismo , Dinâmica Populacional , Proteobactérias/crescimento & desenvolvimento
11.
Braz. j. med. biol. res ; 37(5): 755-764, May 2004. ilus, tab, graf
Artigo em Inglês | LILACS | ID: lil-357551

RESUMO

In view of the importance of anticipating the occurrence of critical situations in medicine, we propose the use of a fuzzy expert system to predict the need for advanced neonatal resuscitation efforts in the delivery room. This system relates the maternal medical, obstetric and neonatal characteristics to the clinical conditions of the newborn, providing a risk measurement of need of advanced neonatal resuscitation measures. It is structured as a fuzzy composition developed on the basis of the subjective perception of danger of nine neonatologists facing 61 antenatal and intrapartum clinical situations which provide a degree of association with the risk of occurrence of perinatal asphyxia. The resulting relational matrix describes the association between clinical factors and risk of perinatal asphyxia. Analyzing the inputs of the presence or absence of all 61 clinical factors, the system returns the rate of risk of perinatal asphyxia as output. A prospectively collected series of 304 cases of perinatal care was analyzed to ascertain system performance. The fuzzy expert system presented a sensitivity of 76.5 percent and specificity of 94.8 percent in the identification of the need for advanced neonatal resuscitation measures, considering a cut-off value of 5 on a scale ranging from 0 to 10. The area under the receiver operating characteristic curve was 0.93. The identification of risk situations plays an important role in the planning of health care. These preliminary results encourage us to develop further studies and to refine this model, which is intended to implement an auxiliary system able to help health care staff to make decisions in perinatal care.


Assuntos
Humanos , Feminino , Recém-Nascido , Adolescente , Adulto , Asfixia Neonatal , Sistemas Inteligentes , Lógica Fuzzy , Ressuscitação , Tomada de Decisões , Valor Preditivo dos Testes , Estudos Prospectivos , Fatores de Risco , Sensibilidade e Especificidade
12.
Bioprocess Biosyst Eng ; 25(6): 377-85, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-13680343

RESUMO

Polyhydroxyalkanoates (PHAs) are biodegradable bioplastics formed from renewable resources, like sugars, with similar characteristics of polypropylene. These bioplastics are industrially produced by pure cultures using expensive pure substrates. These factors lead to a much higher selling price of PHAs compared to petroleum-based plastics, like polypropylene. The use of mixed cultures and cheap substrates (waste materials) can reduce costs of PHA production by more than 50%. Storage of PHAs by mixed populations occurs under transient conditions mainly caused by discontinuous feeding and variation in the electron donor/acceptor presence. In the last years the mechanisms of storage, metabolism and kinetics of mixed cultures have been studied. The maximum capacity of PHA storage and production rate is dependent on the substrate and on the operating conditions used. In this paper an overview and discussion of various mechanisms and processes for PHA production by mixed cultures is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA