Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 53(2): 595-604, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35318614

RESUMO

To verify the potential of metabolites extracted from Rhizobium tropici to trigger the priming of defense responses in cruciferous plants, we analyzed the expression of defense-related genes by qRT-PCR. Brassica oleracea var. capitata, susceptible to Xanthomonas campestris pv. campestris, were grown in greenhouse conditions. At 18 days after sowing, plants were inoculated with 1 mL of 1% concentrated metabolites produced by R. tropici (CM-RT) in the root. In a second experiment, leaves were sprayed with 1 mL of a solution containing 1% CM-RT. Aerial and root tissue were collected separately at 0 (non-treated control condition), 24, and 48 h after application, submitted to RNA extraction and gene expression analysis by qRT-PCR. The results showed that, after root treatment with CM-RT, most evaluated genes were upregulated at 24 h after application and downregulated at 48 h after application in roots, while in leaves, genes were downregulated both at 24 and 48 h after application. On the other hand, leaf treatment with CM-RT showed that most evaluated genes in leaves and roots were upregulated at 24 and 48 h after application. These results indicate that the effect of CM-RT applied in roots seems restricted to the applied region and is not sustained, while the application in leaves results in a more systemic response and maintenance of the effect of CM-RT for a longer period. The results obtained in this study emphasize the biotechnological potential of using metabolites of R. tropici as an elicitor of active defense responses in plants.


Assuntos
Brassica , Rhizobium tropici , Xanthomonas campestris , Brassica/metabolismo , Folhas de Planta/microbiologia , Xanthomonas campestris/genética
2.
Syst Appl Microbiol ; 44(1): 126152, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33276286

RESUMO

Previous studies have recognized South and Central/Latin American mimosoid legumes in the genera Mimosa, Piptadenia and Calliandra as hosts for various nodulating Paraburkholderia species. Several of these species have been validly named in the last two decades, e.g., P. nodosa, P. phymatum, P. diazotrophica, P. piptadeniae, P. ribeironis, P. sabiae and P. mimosarum. There are still, however, a number of diverse Paraburkholderia strains associated with these legumes that have an unclear taxonomic status. In this study, we focus on 30 of these strains which originate from the root nodules of Brazilian and Mexican Mimosa species. They were initially identified as P. tuberum and subsequently placed into a symbiovar (sv. mimosae) based on their host preferences. A polyphasic approach for the delineation of these strains was used, consisting of genealogical concordance analysis (using atpD, gyrB, acnA, pab and 16S rRNA gene sequences), together with comparisons of Average Nucleotide Identity (ANI), DNA G+C content ratios and phenotypic characteristics with those of the type strains of validly named Paraburkholderia species. Accordingly, these 30 strains were delineated into two distinct groups, of which one is conspecific with 'P. atlantica' CNPSo 3155T and the other new to Science. We propose the name Paraburkholderia youngii sp. nov. with type strain JPY169T (= LMG 31411T; SARCC751T) for this novel species.


Assuntos
Burkholderiaceae/classificação , Mimosa/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Brasil , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/genética , Genes Bacterianos , México , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
3.
Int J Syst Evol Microbiol ; 63(Pt 2): 435-441, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22467155

RESUMO

Five strains, JPY461(T), JPY359, JPY389, DPU-3 and STM4206 were isolated from nitrogen-fixing nodules on the roots of Mimosa spp. and their taxonomic positions were investigated using a polyphasic approach. All five strains grew at 15-40 °C (optimum, 30-37 °C), at pH 4.0-8.0 (optimum, pH 6.0-7.0) and with 0-1 % (w/v) NaCl [optimum, 0 % (w/v)]. On the basis of 16S rRNA gene sequence analysis, a representative strain (JPY461(T)) showed 97.2 % sequence similarity to the closest related species Burkholderia acidipaludis SA33(T), a similarity of 97.2 % to Burkholderia terrae KMY02(T), 97.1 % to Burkholderia phymatum STM815(T) and 97.1 % to Burkholderia hospita LMG 20598(T). The predominant fatty acids of the five novel strains were summed feature 2 (comprising C(16 : 1) iso I and/or C(14 : 0) 3-OH), summed feature 3 (comprising C(16 : 1)ω7c and/or C(16 : 1)ω6c), C(16 : 0) , C(16 : 0) 3-OH, C(17 : 0) cyclo, C(18 : 1)ω7c and C(19 : 0) cyclo ω8c. The major isoprenoid quinone was Q-8 and the DNA G+C content of the strains was 63.0-65.0 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid, an unidentified aminolipid and several unidentified phospholipids. The DNA-DNA relatedness of the novel strain with respect to recognized species of the genus Burkholderia was less than 54 %. On the basis of 16S rRNA and recA gene sequence similarities, chemotaxonomic and phenotypic data, the five strains represent a novel species in the genus Burkholderia, for which the name Burkholderia diazotrophica sp. nov. is proposed with the type strain, JPY461(T) ( = LMG 26031(T) = BCRC 80259(T) = KCTC 23308(T)).


Assuntos
Burkholderia/classificação , Mimosa/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Brasil , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes Bacterianos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA