Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 35(7): 2002-2016, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33953289

RESUMO

B cells have the unique property to somatically alter their immunoglobulin (IG) genes by V(D)J recombination, somatic hypermutation (SHM) and class-switch recombination (CSR). Aberrant targeting of these mechanisms is implicated in lymphomagenesis, but the mutational processes are poorly understood. By performing whole genome and transcriptome sequencing of 181 germinal center derived B-cell lymphomas (gcBCL) we identified distinct mutational signatures linked to SHM and CSR. We show that not only SHM, but presumably also CSR causes off-target mutations in non-IG genes. Kataegis clusters with high mutational density mainly affected early replicating regions and were enriched for SHM- and CSR-mediated off-target mutations. Moreover, they often co-occurred in loci physically interacting in the nucleus, suggesting that mutation hotspots promote increased mutation targeting of spatially co-localized loci (termed hypermutation by proxy). Only around 1% of somatic small variants were in protein coding sequences, but in about half of the driver genes, a contribution of B-cell specific mutational processes to their mutations was found. The B-cell-specific mutational processes contribute to both lymphoma initiation and intratumoral heterogeneity. Overall, we demonstrate that mutational processes involved in the development of gcBCL are more complex than previously appreciated, and that B cell-specific mutational processes contribute via diverse mechanisms to lymphomagenesis.


Assuntos
Genoma/genética , Centro Germinativo/metabolismo , Linfoma de Células B/genética , Mutação/genética , Adulto , Linfócitos B/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Genes de Imunoglobulinas/genética , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Switching de Imunoglobulina/genética , Células K562 , Células MCF-7 , Hipermutação Somática de Imunoglobulina/genética , Recombinação V(D)J/genética
2.
Nat Commun ; 10(1): 1635, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967556

RESUMO

Chordomas are rare bone tumors with few therapeutic options. Here we show, using whole-exome and genome sequencing within a precision oncology program, that advanced chordomas (n = 11) may be characterized by genomic patterns indicative of defective homologous recombination (HR) DNA repair and alterations affecting HR-related genes, including, for example, deletions and pathogenic germline variants of BRCA2, NBN, and CHEK2. A mutational signature associated with HR deficiency was significantly enriched in 72.7% of samples and co-occurred with genomic instability. The poly(ADP-ribose) polymerase (PARP) inhibitor olaparib, which is preferentially toxic to HR-incompetent cells, led to prolonged clinical benefit in a patient with refractory chordoma, and whole-genome analysis at progression revealed a PARP1 p.T910A mutation predicted to disrupt the autoinhibitory PARP1 helical domain. These findings uncover a therapeutic opportunity in chordoma that warrants further exploration, and provide insight into the mechanisms underlying PARP inhibitor resistance.


Assuntos
Cordoma/tratamento farmacológico , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Reparo de DNA por Recombinação/genética , Adulto , Idoso , Cordoma/genética , Cordoma/patologia , Mapeamento Cromossômico , Quebras de DNA de Cadeia Dupla , Análise Mutacional de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Instabilidade Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Medicina de Precisão/métodos , Domínios Proteicos/genética , Resultado do Tratamento , Sequenciamento do Exoma
3.
Cancer Cell ; 34(6): 996-1011.e8, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30537516

RESUMO

Identifying the earliest somatic changes in prostate cancer can give important insights into tumor evolution and aids in stratifying high- from low-risk disease. We integrated whole genome, transcriptome and methylome analysis of early-onset prostate cancers (diagnosis ≤55 years). Characterization across 292 prostate cancer genomes revealed age-related genomic alterations and a clock-like enzymatic-driven mutational process contributing to the earliest mutations in prostate cancer patients. Our integrative analysis identified four molecular subgroups, including a particularly aggressive subgroup with recurrent duplications associated with increased expression of ESRP1, which we validate in 12,000 tissue microarray tumors. Finally, we combined the patterns of molecular co-occurrence and risk-based subgroup information to deconvolve the molecular and clinical trajectories of prostate cancer from single patient samples.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Transcriptoma , Adulto , Biomarcadores Tumorais/metabolismo , Evolução Molecular , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Risco , Sequenciamento Completo do Genoma/métodos
4.
Oncotarget ; 8(43): 74049-74057, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-29088767

RESUMO

The availability of tyrosine kinase inhibitors (TKI) during the past ten years has led to improved response and overall survival of patients suffering from metastatic clear cell renal cell carcinoma (ccRCC). However, most of these tumors will eventually progress due to resistance evolving under therapy. The objective of this pilot study was to determine whether molecular alterations in ccRCC tissues sampled over the course of the disease might be suggestive of potential therapies. We performed whole exome sequencing of nine samples from four patients in the MORE (Molecular Renal Cancer Evolution) trial. We analyzed the mutational patterns in the tissues at baseline and compared them to those detectable in biopsy samples after progression under TKI therapy. We found limited genetic concordance between primary and secondary tumor sites with private mutations in FLT4, MTOR, ITGA5, SETD2, PBRM1, and BRCA1 on progression. One patient who showed an increased mutational load in the metastasis responded to nivolumab treatment. Our data provide evidence for clonal evolution and diverse pathways leading to acquired TKI resistance of ccRCC. Acquired resistance to TKI in metastatic ccRCC is due to intra-tumor heterogeneity and clonal evolution of resistant subclones. Mutations occurring under progression might be informative for alternative targeted therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA