Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 11(9): 705-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26236936

RESUMO

Actin-targeting macrolides comprise a large, structurally diverse group of cytotoxins isolated from remarkably dissimilar micro- and macroorganisms. In spite of their disparate origins and structures, many of these compounds bind actin at the same site and exhibit structural relationships reminiscent of modular, combinatorial drug libraries. Here we investigate biosynthesis and evolution of three compound groups: misakinolides, scytophycin-type compounds and luminaolides. For misakinolides from the sponge Theonella swinhoei WA, our data suggest production by an uncultivated 'Entotheonella' symbiont, further supporting the relevance of these bacteria as sources of bioactive polyketides and peptides in sponges. Insights into misakinolide biosynthesis permitted targeted genome mining for other members, providing a cyanobacterial luminaolide producer as the first cultivated source for this dimeric compound family. The data indicate that this polyketide family is bacteria-derived and that the unusual macrolide diversity is the result of combinatorial pathway modularity for some compounds and of convergent evolution for others.


Assuntos
Actinas/metabolismo , Evolução Biológica , Cianobactérias/metabolismo , Deltaproteobacteria/metabolismo , Policetídeos/metabolismo , Actinas/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cianobactérias/genética , Deltaproteobacteria/genética , Expressão Gênica , Macrolídeos/química , Macrolídeos/metabolismo , Dados de Sequência Molecular , Família Multigênica , Peptídeos , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/química , Ligação Proteica , Piranos/química , Piranos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Simbiose , Theonella/microbiologia
2.
Curr Top Dev Biol ; 108: 121-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24512708

RESUMO

Recent studies in Drosophila, Hydra, planarians, zebrafish, mice, indicate that cell death can open paths to regeneration in adult animals. Indeed injury can induce cell death, itself triggering regeneration following an immediate instructive mechanism, whereby the dying cells release signals that induce cellular responses over short and/or long-range distances. Cell death can also provoke a sustained derepressing response through the elimination of cells that suppress regeneration in homeostatic conditions. Whether common properties support what we name "regenerative cell death," is currently unclear. As key parameters, we review here the injury proapoptotic signals, the signals released by the dying cells, the cellular responses, and their respective timing. ROS appears as a common signal triggering cell death through MAPK and/or JNK pathway activation. But the modes of ROS production vary, from a brief pulse upon wounding, to repeated waves as observed in the zebrafish fin where ROS supports two peaks of cell death. Indeed regenerative cell death can be restricted to the injury phase, as in Hydra, Drosophila, or biphasic, immediate, and delayed, as in planarians and zebrafish. The dying cells release in a caspase-dependent manner a variety of signaling molecules, cytokines, growth factors, but also prostaglandins or ATP as recorded in Drosophila, Hydra, mice, and zebrafish, respectively. Interestingly, the ROS-producing cells often resist to cell death, implying a complex paracrine mode of signaling to launch regeneration, involving ROS-producing cells, ROS-sensing cells that release signaling molecules upon caspase activation, and effector cells that respond to these signals by proliferating, migrating, and/or differentiating.


Assuntos
Morte Celular , Regeneração/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Caspases/metabolismo , Diferenciação Celular , Drosophila , Ativação Enzimática , Hydra , Sistema de Sinalização das MAP Quinases , Camundongos , Prostaglandinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Xenopus , Peixe-Zebra
3.
Int J Dev Biol ; 56(6-8): 593-604, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22689371

RESUMO

In the freshwater cnidarian polyp Hydra, cell death takes place in multiple contexts. Indeed apoptosis occurs during oogenesis and spermatogenesis, during starvation, and in early head regenerating tips, promoting local compensatory proliferation at the boundary between heterografts. Apoptosis can also be induced upon exposure to pro-apoptotic agents (colchicine, wortmannin), upon heat-shock in the thermosensitive sf-1 mutant, and upon wounding. In all these contexts, the cells that undergo cell death belong predominantly to the interstitial cell lineage, whereas the epithelial cells, which are rather resistant to pro-apoptotic signals, engulf the apoptotic bodies. Beside this clear difference between the interstitial and the epithelial cell lineages, the different interstitial cell derivatives also show noticeable variations in their respective apoptotic sensitivity, with the precursor cells appearing as the most sensitive to pro-apoptotic signals. The apoptotic machinery has been well conserved across evolution. However, its specific role and regulation in each context are not known yet. Tools that help characterize apoptotic activity in Hydra have recently been developed. Among them, the aposensor Apoliner initially designed in Drosophila reliably measures wortmannin-induced apoptotic activity in a biochemical assay. Also, flow cytometry and TUNEL analyses help identify distinctive features between wortmannin-induced and heat-shock induced apoptosis in the sf-1 strain. Thanks to the live imaging tools already available, Hydra now offers a model system with which the functions of the apoptotic machinery to maintain long-term homeostasis, stem cell renewal, germ cell production, active developmental processes and non-self response can be deciphered.


Assuntos
Apoptose , Hydra/citologia , Hydra/fisiologia , Células-Tronco Multipotentes/fisiologia , Animais , Apoptose/efeitos dos fármacos , Fragmentação do DNA , Células Epiteliais/fisiologia , Resposta ao Choque Térmico , Homeostase , Modelos Animais , Oogênese , Transdução de Sinais , Espermatogênese , Fator Esteroidogênico 1/genética
4.
J Biol Chem ; 286(16): 14713-23, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21383007

RESUMO

Loss of properly regulated cell death and cell survival pathways can contribute to the development of cancer and cancer metastasis. Cell survival signals are modulated by many different receptors, including integrins. Bit-1 is an effector of anoikis (cell death due to loss of attachment) in suspended cells. The anoikis function of Bit-1 can be counteracted by integrin-mediated cell attachment. Here, we explored integrin regulation of Bit-1 in adherent cells. We show that knockdown of endogenous Bit-1 in adherent cells decreased cell survival and re-expression of Bit-1 abrogated this effect. Furthermore, reduction of Bit-1 promoted both staurosporine and serum-deprivation induced apoptosis. Indeed knockdown of Bit-1 in these cells led to increased apoptosis as determined by caspase-3 activation and positive TUNEL staining. Bit-1 expression protected cells from apoptosis by increasing phospho-IκB levels and subsequently bcl-2 gene transcription. Protection from apoptosis under serum-free conditions correlated with bcl-2 transcription and Bcl-2 protein expression. Finally, Bit-1-mediated regulation of bcl-2 was dependent on focal adhesion kinase, PI3K, and AKT. Thus, we have elucidated an integrin-controlled pathway in which Bit-1 is, in part, responsible for the survival effects of cell-ECM interactions.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Regulação da Expressão Gênica , Proteínas Mitocondriais/metabolismo , Animais , Apoptose , Células CHO , Caspase 3/metabolismo , Adesão Celular , Sobrevivência Celular , Cricetinae , Cricetulus , Meios de Cultura Livres de Soro/farmacologia , Fibronectinas/química , Proteínas de Fluorescência Verde/química , Humanos , Integrinas/metabolismo , Camundongos , Metástase Neoplásica , Plasmídeos/metabolismo , Transfecção
5.
Anal Bioanal Chem ; 400(8): 2317-22, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20640407

RESUMO

A fast and simple method for the direct qualitative and semi-quantitative determination of a set of four polymer additives in plastic samples by desorption electrospray ionization time-of-flight mass spectrometry (DESI-TOF-MS) is presented. After evaluation of crucial DESI parameters such as composition of spray solutions and spray voltages, a series of lab-made polypropylene samples containing Chimassorb 81 (2-hydroxy-4-n-octoxybenzophenone), Tinuvin 328 (2-(2-hydroxy-3, 5-ditert-pentylphenyl)-benzotriazole), Tinuvin 326 (2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-5-chloro benzotriazole), and Tinuvin 770 (bis(2,2,6,6,-tetramethyl-4-piperidyl)sebaceate) in concentrations between 0.02% and 0.2% were analyzed, resulting in calibration graphs with R (2) better than 0.994. To demonstrate the applicability of the developed method for the investigation of real samples, liners for in-ground swimming pools and polypropylene granules were analyzed with respect to their content in the selected polymer additives. Two alternative methods, both well established in the fields of polymer additive analysis, namely HPLC with UV detection (after previous extraction) and thermodesorption gas chromatography/mass spectrometry have been employed for evaluation of the results from the DESI experiments.


Assuntos
Polipropilenos/análise , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA