Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell ; 185(4): 585-602.e29, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35051368

RESUMO

The relevance of extracellular magnesium in cellular immunity remains largely unknown. Here, we show that the co-stimulatory cell-surface molecule LFA-1 requires magnesium to adopt its active conformation on CD8+ T cells, thereby augmenting calcium flux, signal transduction, metabolic reprogramming, immune synapse formation, and, as a consequence, specific cytotoxicity. Accordingly, magnesium-sufficiency sensed via LFA-1 translated to the superior performance of pathogen- and tumor-specific T cells, enhanced effectiveness of bi-specific T cell engaging antibodies, and improved CAR T cell function. Clinically, low serum magnesium levels were associated with more rapid disease progression and shorter overall survival in CAR T cell and immune checkpoint antibody-treated patients. LFA-1 thus directly incorporates information on the composition of the microenvironment as a determinant of outside-in signaling activity. These findings conceptually link co-stimulation and nutrient sensing and point to the magnesium-LFA-1 axis as a therapeutically amenable biologic system.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Magnésio/metabolismo , Animais , Infecções Bacterianas/imunologia , Restrição Calórica , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Células HEK293 , Humanos , Memória Imunológica , Sinapses Imunológicas/metabolismo , Imunoterapia , Ativação Linfocitária/imunologia , Sistema de Sinalização das MAP Quinases , Magnésio/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-jun/metabolismo
2.
Cell Mol Life Sci ; 78(13): 5303-5324, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34037806

RESUMO

A growing body of evidence indicates that, over the course of evolution of the immune system, arginine has been selected as a node for the regulation of immune responses. An appropriate supply of arginine has long been associated with the improvement of immune responses. In addition to being a building block for protein synthesis, arginine serves as a substrate for distinct metabolic pathways that profoundly affect immune cell biology; especially macrophage, dendritic cell and T cell immunobiology. Arginine availability, synthesis, and catabolism are highly interrelated aspects of immune responses and their fine-tuning can dictate divergent pro-inflammatory or anti-inflammatory immune outcomes. Here, we review the organismal pathways of arginine metabolism in humans and rodents, as essential modulators of the availability of this semi-essential amino acid for immune cells. We subsequently review well-established and novel findings on the functional impact of arginine biosynthetic and catabolic pathways on the main immune cell lineages. Finally, as arginine has emerged as a molecule impacting on a plethora of immune functions, we integrate key notions on how the disruption or perversion of arginine metabolism is implicated in pathologies ranging from infectious diseases to autoimmunity and cancer.


Assuntos
Arginina/metabolismo , Doenças Transmissíveis/imunologia , Imunidade/imunologia , Neoplasias/imunologia , Animais , Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/patologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
3.
Sci Adv ; 7(9)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33637530

RESUMO

CD4 T cells have been implicated in cancer immunity for their helper functions. Moreover, their direct cytotoxic potential has been shown in some patients with cancer. Here, by mining single-cell RNA-seq datasets, we identified CD4 T cell clusters displaying cytotoxic phenotypes in different human cancers, resembling CD8 T cell profiles. Using the peptide-MHCII-multimer technology, we confirmed ex vivo the presence of cytolytic tumor-specific CD4 T cells. We performed an integrated phenotypic and functional characterization of these cells, down to the single-cell level, through a high-throughput nanobiochip consisting of massive arrays of picowells and machine learning. We demonstrated a direct, contact-, and granzyme-dependent cytotoxic activity against tumors, with delayed kinetics compared to classical cytotoxic lymphocytes. Last, we found that this cytotoxic activity was in part dependent on SLAMF7. Agonistic engagement of SLAMF7 enhanced cytotoxicity of tumor-specific CD4 T cells, suggesting that targeting these cells might prove synergistic with other cancer immunotherapies.


Assuntos
Linfócitos T CD4-Positivos , Neoplasias , Linfócitos T CD8-Positivos , Citotoxicidade Imunológica , Humanos , Imunoterapia , Linfócitos T Citotóxicos
4.
iScience ; 24(1): 101900, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33364588

RESUMO

BTN3A molecules-BTN3A1 in particular-emerged as important mediators of Vγ9Vδ2 T cell activation by phosphoantigens. These metabolites can originate from infections, e.g. with Mycobacterium tuberculosis, or by alterations in cellular metabolism. Despite the growing interest in the BTN3A genes and their high expression in immune cells and various cancers, little is known about their transcriptional regulation. Here we show that these genes are induced by NLRC5, a regulator of MHC class I gene transcription, through an atypical regulatory motif found in their promoters. Accordingly, a robust correlation between NLRC5 and BTN3A gene expression was found in healthy, in M. tuberculosis-infected donors' blood cells, and in primary tumors. Moreover, forcing NLRC5 expression promoted Vγ9Vδ2 T-cell-mediated killing of tumor cells in a BTN3A-dependent manner. Altogether, these findings indicate that NLRC5 regulates the expression of BTN3A genes and hence open opportunities to modulate antimicrobial and anticancer immunity.

5.
JCI Insight ; 4(24)2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31751318

RESUMO

As sufficient extracellular arginine is crucial for T cell function, depletion of extracellular arginine by elevated arginase 1 (Arg1) activity has emerged as a hallmark immunosuppressive mechanism. However, the potential cell-autonomous roles of arginases in T cells have remained unexplored. Here, we show that the arginase isoform expressed by T cells, the mitochondrial Arg2, is a cell-intrinsic regulator of CD8+ T cell activity. Both germline Arg2 deletion and adoptive transfer of Arg2-/- CD8+ T cells significantly reduced tumor growth in preclinical cancer models by enhancing CD8+ T cell activation, effector function, and persistence. Transcriptomic, proteomic, and high-dimensional flow cytometry characterization revealed a CD8+ T cell-intrinsic role of Arg2 in modulating T cell activation, antitumor cytoxicity, and memory formation, independently of extracellular arginine availability. Furthermore, specific deletion of Arg2 in CD8+ T cells strongly synergized with PD-1 blockade for the control of tumor growth and animal survival. These observations, coupled with the finding that pharmacologic arginase inhibition accelerates activation of ex vivo human T cells, unveil Arg2 as a potentially new therapeutic target for T cell-based cancer immunotherapies.


Assuntos
Arginase/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/imunologia , Melanoma Experimental/imunologia , Mitocôndrias/enzimologia , Animais , Arginase/genética , Arginina/metabolismo , Linfócitos T CD8-Positivos/enzimologia , Linhagem Celular Tumoral , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Citotoxicidade Imunológica , Feminino , Deleção de Genes , Humanos , Tolerância Imunológica/imunologia , Memória Imunológica/imunologia , Imunoterapia Adotiva/métodos , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Masculino , Melanoma Experimental/enzimologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/imunologia , Transplante de Neoplasias , Receptor de Morte Celular Programada 1/antagonistas & inibidores
6.
Sci Rep ; 9(1): 9380, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253838

RESUMO

Toll-like receptor 4 (TLR4) is involved in CD4+ T lymphocyte-mediated pathologies. Here, we demonstrate that CD4+ T lymphocytes express functional TLR4 that contributes to their activation, proliferation and cytokine secretion. In addition, we demonstrate that TLR4-induced responses are mediated by macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine. We also demonstrate that MIF regulates suboptimal TCR/CD3-mediated activation of T lymphocytes. On one hand, MIF prevents excessive TCR/CD3-mediated activation of CD4+ T lymphocytes under suboptimal stimulation conditions and, on the other hand, MIF enables activated CD4+ T lymphocytes to sense their microenvironment and adapt their effector response through TLR4. Therefore, MIF appears to be a major regulator of the activation of CD4+ T lymphocytes and the intensity of their effector response. TLR4-mediated activation is thus an important process for T cell-mediated immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Regulação da Expressão Gênica , Oxirredutases Intramoleculares/metabolismo , Ativação Linfocitária , Fatores Inibidores da Migração de Macrófagos/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Receptor 4 Toll-Like/genética , Animais , Biomarcadores , Imunomodulação , Imunofenotipagem , Lipopolissacarídeos/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Receptor 4 Toll-Like/metabolismo
7.
Clin Cancer Res ; 25(14): 4320-4331, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31015344

RESUMO

PURPOSE: Characterization of tumor antigen-specific CD4 T-cell responses in healthy donors and malignant melanoma patients using an in vitro amplified T-cell library screening procedure. PATIENTS AND METHODS: A high-throughput, human leukocyte antigen (HLA)-independent approach was used to estimate at unprecedented high sensitivity level precursor frequencies of tumor antigen- and neoantigen-specific CD4 T cells in healthy donors and patients with cancer. Frequency estimation was combined with isolation and functional characterization of identified tumor-reactive CD4 T-cell clones. RESULTS: In healthy donors, we report frequencies of naïve tumor-associated antigen (TAA)-specific CD4 T cells comparable with those of CD4 T cells specific for infectious agents (Tetanus toxoid). Interestingly, we also identified low, but consistent numbers of memory CD4 T cells specific for several TAAs. In patients with melanoma, low frequencies of circulating TAA-specific CD4 T cells were detected that increased after peptide-based immunotherapy. Such antitumor TAA-specific CD4 T-cell responses were also detectable within the tumor-infiltrated tissues. TAA-specific CD4 T cells in patients displayed a highly polyfunctional state, with partial skewing to Type-2 polarization. Finally, we report the applicability of this approach to the detection and amplification of neoantigen-specific CD4 T cells. CONCLUSIONS: This simple, noninvasive, high-throughput screening of tumor- and neoantigen-specific CD4 T cells requires little biologic material, is HLA class II independent and allows the concomitant screening for a large number of tumor antigens of interest, including neoantigens. This approach will facilitate the immunomonitoring of preexisting and therapy-induced CD4 T-cell responses, and accelerate the development of CD4 T-cell-based therapies.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Antígenos de Neoplasias/sangue , Estudos de Casos e Controles , Ensaios de Triagem em Larga Escala , Humanos , Imunoterapia , Melanoma/sangue , Fragmentos de Peptídeos/imunologia , Neoplasias Cutâneas/sangue , Melanoma Maligno Cutâneo
8.
Cell Host Microbe ; 20(3): 318-328, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27593513

RESUMO

Some strains of the protozoan parasite Leishmania guyanensis (L.g) harbor a viral endosymbiont called Leishmania RNA virus 1 (LRV1). LRV1 recognition by TLR-3 increases parasite burden and lesion swelling in vivo. However, the mechanisms by which anti-viral innate immune responses affect parasitic infection are largely unknown. Upon investigating the mammalian host's response to LRV1, we found that miR-155 was singularly and strongly upregulated in macrophages infected with LRV1+ L.g when compared to LRV1- L.g. LRV1-driven miR-155 expression was dependent on TLR-3/TRIF signaling. Furthermore, LRV1-induced TLR-3 activation promoted parasite persistence by enhancing macrophage survival through Akt activation in a manner partially dependent on miR-155. Pharmacological inhibition of Akt resulted in a decrease in LRV1-mediated macrophage survival and consequently decreased parasite persistence. Consistent with these data, miR-155-deficient mice showed a drastic decrease in LRV1-induced disease severity, and lesional macrophages from these mice displayed reduced levels of Akt phosphorylation.


Assuntos
Imunidade Inata , Leishmania guyanensis/virologia , Leishmaniavirus/imunologia , Macrófagos/parasitologia , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 3 Toll-Like/metabolismo , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Leishmania guyanensis/patogenicidade , Leishmania guyanensis/fisiologia , Leishmaniose Mucocutânea/parasitologia , Leishmaniose Mucocutânea/patologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout
9.
Eur J Immunol ; 46(11): 2629-2638, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510283

RESUMO

Increased expression of endogenous Toll-like receptor 4 (TLR4) ligands (e.g., Tenascin-C, S100A8/A9, citrullinated fibrinogen (cFb) immune complexes) has been observed in patients with rheumatoid arthritis (RA). However, their roles in RA pathogenesis are not well understood. Here, we investigated the expression kinetics and role of endogenous TLR4 ligands in the murine model of collagen-induced arthritis (CIA). Tenascin-C was upregulated in blood early in CIA, and correlated positively with the clinical score at day 56. Levels of S100A8/A9 increased starting from day 28, peaking at day 42, and correlated positively with joint inflammation. Levels of anti-cFb antibodies increased during the late phase of CIA and correlated positively with both joint inflammation and cartilage damage. Blockade of TLR4 activation at the time of the first TLR4 ligand upregulation prevented clinical and histological signs of arthritis. A TLR4-dependent role was also observed for Tenascin-C and cFb immune complexes in osteoclast differentiation in vitro. Taken together, our data suggests that the pathogenic contribution of TLR4 in promoting joint inflammation and bone erosion during CIA occurs via various TLR4 ligands arising at different stages of disease. The data also suggests that Blockade of TLR4 with monoclonal antibodies is a promising strategy in RA treatment.


Assuntos
Artrite Reumatoide/imunologia , Osso e Ossos/patologia , Calgranulina A/sangue , Tenascina/sangue , Receptor 4 Toll-Like/metabolismo , Animais , Complexo Antígeno-Anticorpo/sangue , Artrite Experimental/imunologia , Artrite Reumatoide/patologia , Artrite Reumatoide/fisiopatologia , Calgranulina A/genética , Diferenciação Celular , Colágeno , Modelos Animais de Doenças , Fibrinogênio/imunologia , Articulações/imunologia , Ligantes , Camundongos , Camundongos Endogâmicos DBA , Osteoclastos/metabolismo , Análise Espaço-Temporal , Tenascina/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
10.
J Exp Med ; 213(2): 177-87, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26809444

RESUMO

Evidence has recently emerged that butyrophilins, which are members of the extended B7 family of co-stimulatory molecules, have diverse functions in the immune system. We found that the human and mouse genes encoding butyrophilin-2A2 (BTN2A2) are regulated by the class II trans-activator and regulatory factor X, two transcription factors dedicated to major histocompatibility complex class II expression, suggesting a role in T cell immunity. To address this, we generated Btn2a2-deficient mice. Btn2a2(-/-) mice exhibited enhanced effector CD4(+) and CD8(+) T cell responses, impaired CD4(+) regulatory T cell induction, potentiated antitumor responses, and exacerbated experimental autoimmune encephalomyelitis. Altered immune responses were attributed to Btn2a2 deficiency in antigen-presenting cells rather than T cells or nonhematopoietic cells. These results provide the first genetic evidence that BTN2A2 is a co-inhibitory molecule that modulates T cell-mediated immunity.


Assuntos
Genes MHC da Classe II , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Butirofilinas , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Regulação da Expressão Gênica , Humanos , Imunidade Celular , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , Transativadores/genética , Transativadores/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
11.
PLoS Genet ; 10(9): e1004577, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25232951

RESUMO

Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme.


Assuntos
Cílios/metabolismo , Cílios/fisiologia , Proteínas/metabolismo , Animais , Dineínas do Axonema , Axonema/genética , Axonema/metabolismo , Sítios de Ligação/genética , Linhagem Celular , Pré-Escolar , Cílios/genética , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Drosophila/genética , Drosophila/metabolismo , Dineínas/genética , Dineínas/metabolismo , Feminino , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Masculino , Mutação/genética , Linhagem , Fenótipo , Proteínas/genética , Transcrição Gênica/genética
12.
Cancer Res ; 74(22): 6430-40, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25252912

RESUMO

Plasmacytoid dendritic cells (pDC) rapidly and massively produce type I IFN and other inflammatory cytokines in response to foreign nucleic acids, thereby indirectly influencing T-cell responses. Moreover, antigen (Ag)-presenting pDCs directly regulate T-cell differentiation. Depending on the immune environment, pDCs exhibit either tolerogenic or immunogenic properties. Here, we show that CpG-activated pDCs promote efficient Th17 differentiation. Indeed, Th17 responses are defective in mice selectively lacking MHCII on pDCs upon antigenic challenge. Importantly, in those mice, the frequency of Th17 cells infiltrating solid tumors is impaired. As a result, the recruitment of infiltrating leukocytes in tumors, including tumor-specific cytotoxic T lymphocytes (CTL), is altered and results in increased tumor growth. Importantly, following immunization with tumor Ag and CpG-B, MHCII-restricted Ag presentation by pDCs promotes the differentiation of antitumor Th17 cells that induce intratumor CTL recruitment and subsequent regression of established tumors. Our results highlight a new role for Ag presenting activated pDCs in promoting the development of Th17 cells and impacting on antitumor immunity.


Assuntos
Apresentação de Antígeno , Células Dendríticas/fisiologia , Fosfatos de Dinucleosídeos/imunologia , Neoplasias Experimentais/imunologia , Células Th17/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Histocompatibilidade Classe II/imunologia , Imunização , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Linfócitos T Citotóxicos/fisiologia
13.
Nucleic Acids Res ; 42(15): 9641-55, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25104025

RESUMO

The activation, or maturation, of dendritic cells (DCs) is crucial for the initiation of adaptive T-cell mediated immune responses. Research on the molecular mechanisms implicated in DC maturation has focused primarily on inducible gene-expression events promoting the acquisition of new functions, such as cytokine production and enhanced T-cell-stimulatory capacity. In contrast, mechanisms that modulate DC function by inducing widespread gene-silencing remain poorly understood. Yet the termination of key functions is known to be critical for the function of activated DCs. Genome-wide analysis of activation-induced histone deacetylation, combined with genome-wide quantification of activation-induced silencing of nascent transcription, led us to identify a novel inducible transcriptional-repression pathway that makes major contributions to the DC-maturation process. This silencing response is a rapid primary event distinct from repression mechanisms known to operate at later stages of DC maturation. The repressed genes function in pivotal processes--including antigen-presentation, extracellular signal detection, intracellular signal transduction and lipid-mediator biosynthesis--underscoring the central contribution of the silencing mechanism to rapid reshaping of DC function. Interestingly, promoters of the repressed genes exhibit a surprisingly high frequency of PU.1-occupied sites, suggesting a novel role for this lineage-specific transcription factor in marking genes poised for inducible repression.


Assuntos
Células Dendríticas/metabolismo , Inativação Gênica , Proteínas Nucleares/genética , Transativadores/genética , Transcrição Gênica , Animais , Humanos , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo
14.
J Exp Med ; 211(6): 1153-66, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24842370

RESUMO

Dendritic cells (DCs), and more recently lymph node stromal cells (LNSCs), have been described to tolerize self-reactive CD8(+) T cells in LNs. Although LNSCs express MHCII, it is unknown whether they can also impact CD4(+) T cell functions. We show that the promoter IV (pIV) of class II transactivator (CIITA), the master regulator of MHCII expression, controls endogenous MHCII expression by LNSCs. Unexpectedly, LNSCs also acquire peptide-MHCII complexes from DCs and induce CD4(+) T cell dysfunction by presenting transferred complexes to naive CD4(+) T cells and preventing their proliferation and survival. Our data reveals a novel, alternative mechanism where LN-resident stromal cells tolerize CD4(+) T cells through the presentation of self-antigens via transferred peptide-MHCII complexes of DC origin.


Assuntos
Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Tolerância Imunológica/imunologia , Linfonodos/imunologia , Células Estromais/imunologia , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células , Células Cultivadas , Células Dendríticas/metabolismo , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Interferon gama/imunologia , Interferon gama/farmacologia , Linfonodos/citologia , Linfonodos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Peptídeos/imunologia , Peptídeos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/metabolismo , Transativadores/genética , Transativadores/imunologia , Transativadores/metabolismo
15.
J Biol Chem ; 289(22): 15309-18, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24737331

RESUMO

Inflammation is mediated mainly by leukocytes that express both Toll-like receptor 4 (TLR4) and Fc γ receptors (FcγR). Dysregulated activation of leukocytes via exogenous and endogenous ligands of TLR4 results in a large number of inflammatory disorders that underlie a variety of human diseases. Thus, differentially blocking inflammatory cells while sparing structural cells, which are FcγR-negative, represents an elegant strategy when targeting the underlying causes of human diseases. Here, we report a novel tethering mechanism of the Fv and Fc portions of anti-TLR4 blocking antibodies that achieves increased potency on inflammatory cells. In the presence of ligand (e.g. lipopolysaccharide (LPS)), TLR4 traffics into glycolipoprotein microdomains, forming concentrated protein platforms that include FcγRs. This clustering produces a microenvironment allowing anti-TLR4 antibodies to co-engage TLR4 and FcγRs, increasing their avidity and thus substantially increasing their inhibitory potency. Tethering of antibodies to both TLR4 and FcγRs proves valuable in ameliorating inflammation in vivo. This novel mechanism of action therefore has the potential to enable selective intervention of relevant cell types in TLR4-driven diseases.


Assuntos
Inflamação/imunologia , Macrófagos/imunologia , Receptores de IgG/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Anticorpos Monoclonais/imunologia , Sítios de Ligação , Células CHO , Linhagem Celular , Cricetulus , Dimerização , Feminino , Humanos , Inflamação/metabolismo , Macrófagos/citologia , Microdomínios da Membrana/imunologia , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de IgG/metabolismo , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo , Células U937
16.
Int J Clin Exp Pathol ; 7(2): 537-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24551274

RESUMO

Reactive oxygen species (ROS) contribute to alveolar cell death in acute respiratory distress syndrome (ARDS) and we previously demonstrated that NOX1-derived ROS contributed to hyperoxia-induced alveolar cell death in mice. The study investigates whether NOX1 expression is modulated in epithelial cells concomitantly to cell death and associated to STAT3 signaling in the exudative phase of ARDS. In addition, the role of STAT3 activation in NOX1-dependent epithelial cell death was confirmed by using a lung epithelial cell line and in mice exposed to hyperoxia. NOX1 expression, cell death and STAT3 staining were evaluated in the lungs of control and ARDS patients by immunohistochemistry. In parallel, a stable NOX1-silenced murine epithelial cell line (MLE12) and NOX1-deficient mice were used to characterize signalling pathways. In the present study, we show that NOX1 is detected in alveolar epithelial cells of ARDS patients in the exudative stage. In addition, increased alveolar epithelial cell death and phosphorylated STAT3 are observed in ARDS patients and associated with NOX1 expression. Phosphorylated STAT3 is also correlated with TUNEL staining. We also confirmed that NOX1-dependent STAT3 activation participates to alveolar epithelial cell death. Silencing and acute inhibition of NOX1 in MLE12 led to decreased cell death and cleaved-caspase 3 induced by hyperoxia. Additionally, hyperoxia-induced STAT3 phosphorylation is dependent on NOX1 expression and associated with cell death in MLE12 and mice. This study demonstrates that NOX1 is involved in human ARDS pathophysiology and is responsible for the damage occurring in alveolar epithelial cells at least in part via STAT3 signalling pathways.


Assuntos
Células Epiteliais/enzimologia , Hiperóxia/enzimologia , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidases/metabolismo , Alvéolos Pulmonares/enzimologia , Síndrome do Desconforto Respiratório/enzimologia , Fator de Transcrição STAT3/metabolismo , Animais , Estudos de Casos e Controles , Caspase 3/metabolismo , Morte Celular , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/patologia , Feminino , Humanos , Hiperóxia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADH NADPH Oxirredutases/deficiência , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , Fosforilação , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Alvéolos Pulmonares/patologia , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/patologia , Transdução de Sinais , Fatores de Tempo , Transfecção
17.
PLoS Pathog ; 10(1): e1003900, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24453980

RESUMO

Triggering receptor expressed on myeloid cells-1 (TREM-1) is a potent amplifier of pro-inflammatory innate immune reactions. While TREM-1-amplified responses likely aid an improved detection and elimination of pathogens, excessive production of cytokines and oxygen radicals can also severely harm the host. Studies addressing the pathogenic role of TREM-1 during endotoxin-induced shock or microbial sepsis have so far mostly relied on the administration of TREM-1 fusion proteins or peptides representing part of the extracellular domain of TREM-1. However, binding of these agents to the yet unidentified TREM-1 ligand could also impact signaling through alternative receptors. More importantly, controversial results have been obtained regarding the requirement of TREM-1 for microbial control. To unambiguously investigate the role of TREM-1 in homeostasis and disease, we have generated mice deficient in Trem1. Trem1(-/-) mice are viable, fertile and show no altered hematopoietic compartment. In CD4(+) T cell- and dextran sodium sulfate-induced models of colitis, Trem1(-/-) mice displayed significantly attenuated disease that was associated with reduced inflammatory infiltrates and diminished expression of pro-inflammatory cytokines. Trem1(-/-) mice also exhibited reduced neutrophilic infiltration and decreased lesion size upon infection with Leishmania major. Furthermore, reduced morbidity was observed for influenza virus-infected Trem1(-/-) mice. Importantly, while immune-associated pathologies were significantly reduced, Trem1(-/-) mice were equally capable of controlling infections with L. major, influenza virus, but also Legionella pneumophila as Trem1(+/+) controls. Our results not only demonstrate an unanticipated pathogenic impact of TREM-1 during a viral and parasitic infection, but also indicate that therapeutic blocking of TREM-1 in distinct inflammatory disorders holds considerable promise by blunting excessive inflammation while preserving the capacity for microbial control.


Assuntos
Colite/imunologia , Vírus da Influenza A/imunologia , Legionella pneumophila/imunologia , Doença dos Legionários/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Glicoproteínas de Membrana/deficiência , Infecções por Orthomyxoviridae/imunologia , Receptores Imunológicos/deficiência , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Colite/terapia , Modelos Animais de Doenças , Doença dos Legionários/genética , Doença dos Legionários/patologia , Doença dos Legionários/terapia , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/patologia , Leishmaniose Cutânea/terapia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/terapia , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptor Gatilho 1 Expresso em Células Mieloides
18.
J Bone Miner Res ; 29(2): 290-303, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24038328

RESUMO

The molecular networks controlling bone homeostasis are not fully understood. The common evolution of bone and adaptive immunity encourages the investigation of shared regulatory circuits. MHC Class II Transactivator (CIITA) is a master transcriptional co-activator believed to be exclusively dedicated for antigen presentation. CIITA is expressed in osteoclast precursors, and its expression is accentuated in osteoporotic mice. We thus asked whether CIITA plays a role in bone biology. To this aim, we fully characterized the bone phenotype of two mouse models of CIITA overexpression, respectively systemic and restricted to the monocyte-osteoclast lineage. Both CIITA-overexpressing mouse models revealed severe spontaneous osteoporosis, as assessed by micro-computed tomography and histomorphometry, associated with increased osteoclast numbers and enhanced in vivo bone resorption, whereas osteoblast numbers and in vivo bone-forming activity were unaffected. To understand the underlying cellular and molecular bases, we investigated ex vivo the differentiation of mutant bone marrow monocytes into osteoclasts and immune effectors, as well as osteoclastogenic signaling pathways. CIITA-overexpressing monocytes differentiated normally into effector macrophages or dendritic cells but showed enhanced osteoclastogenesis, whereas CIITA ablation suppressed osteoclast differentiation. Increased c-fms and receptor activator of NF-κB (RANK) signaling underlay enhanced osteoclast differentiation from CIITA-overexpressing precursors. Moreover, by extending selected phenotypic and cellular analyses to additional genetic mouse models, namely MHC Class II deficient mice and a transgenic mouse line lacking a specific CIITA promoter and re-expressing CIITA in the thymus, we excluded MHC Class II expression and T cells from contributing to the observed skeletal phenotype. Altogether, our study provides compelling genetic evidence that CIITA, the molecular switch of antigen presentation, plays a novel, unexpected function in skeletal homeostasis, independent of MHC Class II expression and T cells, by exerting a selective and intrinsic control of osteoclast differentiation and bone resorption in vivo.


Assuntos
Apresentação de Antígeno/fisiologia , Diferenciação Celular/imunologia , Regulação da Expressão Gênica/imunologia , Proteínas Nucleares/imunologia , Osteoclastos/imunologia , Receptor de Fator Estimulador de Colônias de Macrófagos/imunologia , Transativadores/imunologia , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica/genética , Antígenos de Histocompatibilidade Classe II/biossíntese , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transativadores/genética , Transativadores/metabolismo
19.
Nat Commun ; 4: 2842, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24280864

RESUMO

Thymic epithelial cells (TEC) are heterogeneous stromal cells that generate microenvironments required for the formation of T cells within the thymus. Defects in TEC lead to immunodeficiency or autoimmunity. Here we identify TEC as the major source of cysteine-rich protein 61 (CYR61), a matricellular protein implicated in cell proliferation and migration. Binding of CYR61 to LFA-1, ICAM-1 and integrin α6 supports the adhesion of TEC and thymocytes as well as their interaction. Treatment of thymic lobes with recombinant CYR61 expands the stromal compartment by inducing the proliferation of TEC and activates Akt signalling. Engraftment of CYR61-overexpressing thymic lobes into athymic nude mice drastically boosts the yield of thymic output via expansion of TEC. This increases the space for the recruitment of circulating hematopoietic progenitors and the development of T cells. Our discovery paves the way for therapeutic interventions designed to restore thymus stroma and T-cell generation.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Células Epiteliais/citologia , Células-Tronco/citologia , Linfócitos T/citologia , Timo/citologia , Animais , Adesão Celular , Proliferação de Células , Células Cultivadas , Proteína Rica em Cisteína 61/genética , Células Epiteliais/metabolismo , Humanos , Integrina alfa6/genética , Integrina alfa6/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Ligação Proteica , Células-Tronco/metabolismo , Linfócitos T/metabolismo , Timo/metabolismo
20.
MAbs ; 5(4): 555-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23751612

RESUMO

Fc-modified anti-human CD3ε monoclonal antibodies (mAbs) are in clinical development for the treatment of autoimmune diseases. These next generation mAbs have completed clinical trials in patients with type-1 diabetes and inflammatory bowel disease demonstrating a narrow therapeutic window. Lowered doses are ineffective, yet higher pharmacologically-active doses cause an undesirable level of adverse events. Thus, there is a critical need for a return to bench research to explore ways of improving clinical outcomes. Indeed, we recently reported that a short course of treatment affords synergy, providing long-term disease amelioration when combining anti-mouse CD3 and anti-mouse tumor necrosis factor mAbs in experimental arthritis. Such strategies may widen the window between risk and benefit; however, to more accurately assess experimentally the biology and pharmacology, reagents that mimic the current development candidates were required. Consequently, we engineered an Fc-modified anti-mouse CD3ε mAb, 2C11-Novi. Here, we report the functional characterization of 2C11-Novi demonstrating that it does not bind FcγR in vitro and elicits little cytokine release in vivo, while maintaining classical pharmacodynamic effects (CD3-TCR downregulation and T cell killing). Furthermore, we observed that oral administration of 2C11-Novi ameliorated progression of remitting-relapsing experimental autoimmune encephalitis in mice, significantly reducing the primary acute and subsequent relapse phase of the disease. With innovative approaches validated in two experimental models of human disease, 2C11-Novi represents a meaningful tool to conduct further mechanistic studies aiming at exploiting the immunoregulatory properties of Fc-modified anti-CD3 therapies via combination therapy using parenteral or oral routes of administration.


Assuntos
Anticorpos Monoclonais Murinos , Artrite Experimental , Complexo CD3/imunologia , Encefalomielite Autoimune Experimental , Engenharia de Proteínas , Animais , Anticorpos Monoclonais Murinos/genética , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Monoclonais Murinos/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Masculino , Camundongos , Receptores de IgG/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA