Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(31): 10807-10821, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32532796

RESUMO

In the peripheral nerve, mechanosensitive axons are insulated by myelin, a multilamellar membrane formed by Schwann cells. Here, we offer first evidence that a myelin degradation product induces mechanical hypersensitivity and global transcriptomics changes in a sex-specific manner. Focusing on downstream signaling events of the functionally active 84-104 myelin basic protein (MBP(84-104)) fragment released after nerve injury, we demonstrate that exposing the sciatic nerve to MBP(84-104) via endoneurial injection produces robust mechanical hypersensitivity in female, but not in male, mice. RNA-seq and systems biology analysis revealed a striking sexual dimorphism in molecular signatures of the dorsal root ganglia (DRG) and spinal cord response, not observed at the nerve injection site. Mechanistically, intra-sciatic MBP(84-104) induced phospholipase C (PLC)-driven (females) and phosphoinositide 3-kinase-driven (males) phospholipid metabolism (tier 1). PLC/inositol trisphosphate receptor (IP3R) and estrogen receptor co-regulation in spinal cord yielded Ca2+-dependent nociceptive signaling induction in females that was suppressed in males (tier 2). IP3R inactivation by intrathecal xestospongin C attenuated the female-specific hypersensitivity induced by MBP(84-104). According to sustained sensitization in tiers 1 and 2, T cell-related signaling spreads to the DRG and spinal cord in females, but remains localized to the sciatic nerve in males (tier 3). These results are consistent with our previous finding that MBP(84-104)-induced pain is T cell-dependent. In summary, an autoantigenic peptide endogenously released in nerve injury triggers multisite, sex-specific transcriptome changes, leading to neuropathic pain only in female mice. MBP(84-104) acts through sustained co-activation of metabolic, estrogen receptor-mediated nociceptive, and autoimmune signaling programs.


Assuntos
Sinalização do Cálcio , Gânglios Espinais/metabolismo , Neuralgia/metabolismo , RNA-Seq , Nervo Isquiático/metabolismo , Caracteres Sexuais , Transcriptoma , Animais , Feminino , Gânglios Espinais/patologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Camundongos , Proteína Básica da Mielina/toxicidade , Neuralgia/induzido quimicamente , Neuralgia/patologia , Fragmentos de Peptídeos/toxicidade , Nervo Isquiático/patologia , Fosfolipases Tipo C/metabolismo
2.
Biochem J ; 475(14): 2355-2376, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29954845

RESUMO

In demyelinating nervous system disorders, myelin basic protein (MBP), a major component of the myelin sheath, is proteolyzed and its fragments are released in the neural environment. Here, we demonstrated that, in contrast with MBP, the cellular uptake of the cryptic 84-104 epitope (MBP84-104) did not involve the low-density lipoprotein receptor-related protein-1, a scavenger receptor. Our pull-down assay, mass spectrometry and molecular modeling studies suggested that, similar with many other unfolded and aberrant proteins and peptides, the internalized MBP84-104 was capable of binding to the voltage-dependent anion-selective channel-1 (VDAC-1), a mitochondrial porin. Molecular modeling suggested that MBP84-104 directly binds to the N-terminal α-helix located midway inside the 19 ß-blade barrel of VDAC-1. These interactions may have affected the mitochondrial functions and energy metabolism in multiple cell types. Notably, MBP84-104 caused neither cell apoptosis nor affected the total cellular ATP levels, but repressed the aerobic glycolysis (lactic acid fermentation) and decreased the l-lactate/d-glucose ratio (also termed as the Warburg effect) in normal and cancer cells. Overall, our findings implied that because of its interactions with VDAC-1, the cryptic MBP84-104 peptide invoked reprogramming of the cellular energy metabolism that favored enhanced cellular activity, rather than apoptotic cell death. We concluded that the released MBP84-104 peptide, internalized by the cells, contributes to the reprogramming of the energy-generating pathways in multiple cell types.


Assuntos
Trifosfato de Adenosina/metabolismo , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína Básica da Mielina/farmacologia , Fragmentos de Peptídeos/farmacologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Trifosfato de Adenosina/química , Animais , Linhagem Celular Tumoral , Glicólise/efeitos dos fármacos , Humanos , Camundongos , Mitocôndrias/química , Proteína Básica da Mielina/química , Fragmentos de Peptídeos/química , Domínios Proteicos , Estrutura Secundária de Proteína , Ratos , Canal de Ânion 1 Dependente de Voltagem/química
3.
Cell Chem Biol ; 25(4): 370-379.e4, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29396288

RESUMO

Monitoring enzymatic activities at the cell surface is challenging due to the poor efficiency of transport and membrane integration of fluorescence resonance energy transfer (FRET)-based biosensors. Therefore, we developed a hybrid biosensor with separate donor and acceptor that assemble in situ. The directed evolution and sequence-function analysis technologies were integrated to engineer a monobody variant (PEbody) that binds to R-phycoerythrin (R-PE) dye. PEbody was used for visualizing the dynamic formation/separation of intercellular junctions. We further fused PEbody with the enhanced CFP and an enzyme-specific peptide at the extracellular surface to create a hybrid FRET biosensor upon R-PE capture for monitoring membrane-type-1 matrix metalloproteinase (MT1-MMP) activities. This biosensor revealed asymmetric distribution of MT1-MMP activities, which were high and low at loose and stable cell-cell contacts, respectively. Therefore, directed evolution and rational design are promising tools to engineer molecular binders and hybrid FRET biosensors for monitoring molecular regulations at the surface of living cells.


Assuntos
Anticorpos/química , Técnicas Biossensoriais/métodos , Corantes/química , Transferência Ressonante de Energia de Fluorescência/métodos , Metaloproteinase 14 da Matriz/análise , Ficoeritrina/química , Anticorpos/genética , Evolução Molecular Direcionada , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Imagem Óptica/métodos , Peptídeos/química , Peptídeos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
4.
J Immunol Methods ; 455: 80-87, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29428829

RESUMO

Sciatic nerve chronic constriction injury (CCI) in rodents produces nerve demyelination via proteolysis of myelin basic protein (MBP), the major component of myelin sheath. Proteolysis releases the cryptic MBP epitope, a demyelination marker, which is hidden in the native MBP fold. It has never been established if the proteolytic release of this cryptic MBP autoantigen stimulates the post-injury increase in the respective circulating autoantibodies. To measure these autoantibodies, we developed the ELISA that employed the cryptic 84-104 MBP sequence (MBP84-104) as bait. This allowed us, for the first time, to quantify the circulating anti-MBP84-104 autoantibodies in rat serum post-CCI. The circulating IgM (but not IgG) autoantibodies were detectable as soon as day 7 post-CCI. The IgM autoantibody level continually increased between days 7 and 28 post-injury. Using the rat serum samples, we established that the ELISA intra-assay (precision) and inter-assay (repeatability) variability parameters were 2.87% and 4.58%, respectively. We also demonstrated the ELISA specificity by recording the autoantibodies to the liberated MBP84-104 epitope alone, but not to intact MBP in which the 84-104 region is hidden. Because the 84-104 sequence is conserved among mammals, we tested if the ELISA was applicable to detect demyelination and quantify the respective autoantibodies in humans. Our limited pilot study that involved 16 female multiple sclerosis and fibromyalgia syndrome patients demonstrated that the ELISA was efficient in measuring both the circulating IgG- and IgM-type autoantibodies in patients exhibiting demyelination. We believe that the ELISA measurements of the circulating autoantibodies against the pathogenic MBP84-104 peptide may facilitate the identification of demyelination in both experimental and clinical settings. In clinic, these measurements may assist neurologists to recognize patients with painful neuropathy and demyelinating diseases, and as a result, to personalize their treatment regimens.


Assuntos
Autoantígenos/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Esclerose Múltipla/diagnóstico , Proteína Básica da Mielina/imunologia , Fragmentos de Peptídeos/imunologia , Polirradiculoneuropatia/diagnóstico , Nervo Isquiático/patologia , Animais , Autoanticorpos/metabolismo , Biomarcadores/metabolismo , Doenças Desmielinizantes , Modelos Animais de Doenças , Epitopos/metabolismo , Feminino , Humanos , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/cirurgia , Sensibilidade e Especificidade
5.
Brain Behav Immun ; 60: 282-292, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27833045

RESUMO

Myelin basic protein (MBP) is an auto-antigen able to induce intractable pain from innocuous mechanical stimulation (mechanical allodynia). The mechanisms provoking this algesic MBP activity remain obscure. Our present study demonstrates that membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) releases the algesic MBP peptides from the damaged myelin, which then reciprocally enhance the expression of MT1-MMP in nerve to sustain a state of allodynia. Specifically, MT1-MMP expression and activity in rat sciatic nerve gradually increased starting at day 3 after chronic constriction injury (CCI). Inhibition of the MT1-MMP activity by intraneural injection of the function-blocking human DX2400 monoclonal antibody at day 3 post-CCI reduced mechanical allodynia and neuropathological signs of Wallerian degeneration, including axon demyelination, degeneration, edema and formation of myelin ovoids. Consistent with its role in allodynia, the MT1-MMP proteolysis of MBP generated the MBP69-86-containing epitope sequences in vitro. In agreement, the DX2400 therapy reduced the release of the MBP69-86 epitope in CCI nerve. Finally, intraneural injection of the algesic MBP69-86 and control MBP2-18 peptides differentially induced MT1-MMP and MMP-2 expression in the nerve. With these data we offer a novel, self-sustaining mechanism of persistent allodynia via the positive feedback loop between MT1-MMP and the algesic MBP peptides. Accordingly, short-term inhibition of MT1-MMP activity presents a feasible pharmacological approach to intervene in this molecular circuit and the development of neuropathic pain.


Assuntos
Metaloproteinase 1 da Matriz/metabolismo , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Neuralgia/metabolismo , Animais , Feminino , Hiperalgesia/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Peptídeos , Ratos Sprague-Dawley , Nervo Isquiático/lesões
6.
Oncotarget ; 8(2): 2781-2799, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27835863

RESUMO

The invasion-promoting MT1-MMP is a cell surface-associated collagenase with a plethora of critical cellular functions. There is a consensus that MT1-MMP is a key protease in aberrant pericellular proteolysis in migrating cancer cells and, accordingly, a promising drug target. Because of high homology in the MMP family and a limited success in the design of selective small-molecule inhibitors, it became evident that the inhibitor specificity is required for selective and successful MT1-MMP therapies. Using the human Fab antibody library (over 1.25×109 individual variants) that exhibited the extended, 23-27 residue long, VH CDR-H3 segments, we isolated a panel of the inhibitory antibody fragments, from which the 3A2 Fab outperformed others as a specific and potent, low nanomolar range, inhibitor of MT1-MMP. Here, we report the in-depth characterization of the 3A2 antibody. Our multiple in vitro and cell-based tests and assays, and extensive structural modeling of the antibody/protease interactions suggest that the antibody epitope involves the residues proximal to the protease catalytic site and that, in contrast with tissue inhibitor-2 of MMPs (TIMP-2), the 3A2 Fab inactivates the protease functionality by binding to the catalytic domain outside the active site cavity. In agreement with the studies in metastasis by others, our animal studies in acute pulmonary melanoma metastasis support a key role of MT1-MMP in metastatic process. Conversely, the selective anti-MT1-MMP monotherapy significantly alleviated melanoma metastatic burden. It is likely that further affinity maturation of the 3A2 Fab will result in the lead inhibitor and a proof-of-concept for MT1-MMP targeting in metastatic cancers.


Assuntos
Anticorpos Bloqueadores/farmacologia , Antineoplásicos Imunológicos/farmacologia , Metaloproteinase 14 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Anticorpos Bloqueadores/química , Antineoplásicos Imunológicos/química , Ligação Competitiva , Domínio Catalítico , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Colágeno/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Feminino , Xenoenxertos , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/farmacologia , Inibidores de Metaloproteinases de Matriz/química , Camundongos , Modelos Moleculares , Conformação Molecular , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias/tratamento farmacológico , Ligação Proteica , Proteólise , Proteínas Recombinantes/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(52): 14970-14975, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27965386

RESUMO

Proteases are frequent pharmacological targets, and their inhibitors are valuable drugs in multiple pathologies. The catalytic mechanism and the active-site fold, however, are largely conserved among the protease classes, making the development of the selective inhibitors exceedingly challenging. In our departure from the conventional strategies, we reviewed the structure of known camelid inhibitory antibodies, which block enzyme activities via their unusually long, convex-shaped paratopes. We synthesized the human Fab antibody library (over 1.25 × 109 individual variants) that carried the extended, 23- to 27-residue, complementarity-determining region (CDR)-H3 segments. As a proof of principle, we used the catalytic domain of matrix metalloproteinase-14 (MMP-14), a promalignant protease and a drug target in cancer, as bait. In our screens, we identified 20 binders, of which 14 performed as potent and selective inhibitors of MMP-14 rather than as broad-specificity antagonists. Specifically, Fab 3A2 bound to MMP-14 in the vicinity of the active pocket with a high 4.8 nM affinity and was similarly efficient (9.7 nM) in inhibiting the protease cleavage activity. We suggest that the convex paratope antibody libraries described here could be readily generalized to facilitate the design of the antibody inhibitors to many additional enzymes.


Assuntos
Sítios de Ligação de Anticorpos , Metaloproteinase 14 da Matriz/imunologia , Inibidores de Metaloproteinases de Matriz/química , Motivos de Aminoácidos , Animais , Anticorpos/química , Camelus , Domínio Catalítico , Regiões Determinantes de Complementaridade/química , Escherichia coli , Humanos , Fragmentos Fab das Imunoglobulinas/química , Concentração Inibidora 50 , Metaloproteinase 14 da Matriz/química , Camundongos , Conformação Molecular , Biblioteca de Peptídeos , Ressonância de Plasmônio de Superfície
8.
J Neuroinflammation ; 12: 158, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26337825

RESUMO

BACKGROUND: Mechanical pain hypersensitivity associated with physical trauma to peripheral nerve depends on T-helper (Th) cells expressing the algesic cytokine, interleukin (IL)-17A. Fibronectin (FN) isoform alternatively spliced within the IIICS region encoding the 25-residue-long connecting segment 1 (CS1) regulates T cell recruitment to the sites of inflammation. Herein, we analyzed the role of CS1-containing FN (FN-CS1) in IL-17A expression and pain after peripheral nerve damage. METHODS: Mass spectrometry, immunoblotting, and FN-CS1-specific immunofluorescence analyses were employed to examine FN expression after chronic constriction injury (CCI) in rat sciatic nerves. The acute intra-sciatic nerve injection of the synthetic CS1 peptide (a competitive inhibitor of the FN-CS1/α4 integrin binding) was used to elucidate the functional significance of FN-CS1 in mechanical and thermal pain hypersensitivity and IL-17A expression (by quantitative Taqman RT-PCR) after CCI. The CS1 peptide effects were analyzed in cultured primary Schwann cells, the major source of FN-CS1 in CCI nerves. RESULTS: Following CCI, FN expression in sciatic nerve increased with the dominant FN-CS1 deposition in endothelial cells, Schwann cells, and macrophages. Acute CS1 therapy attenuated mechanical allodynia (pain from innocuous stimulation) but not thermal hyperalgesia and reduced the levels of IL-17A expression in the injured nerve. CS1 peptide inhibited the LPS- or starvation-stimulated activation of the stress ERK/MAPK pathway in cultured Schwann cells. CONCLUSIONS: After physical trauma to the peripheral nerve, FN-CS1 contributes to mechanical pain hypersensitivity by increasing the number of IL-17A-expressing (presumably, Th17) cells. CS1 peptide therapy can be developed for pharmacological control of neuropathic pain.


Assuntos
Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Interleucina-17/metabolismo , Peptídeos/metabolismo , Neuropatia Ciática/complicações , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Hiperalgesia/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-17/genética , Medição da Dor , Peptídeos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Neuropatia Ciática/patologia , Fatores de Tempo
9.
Chem Biol ; 22(8): 1122-33, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26256476

RESUMO

Matrix metalloproteinases (MMPs) play incompletely understood roles in health and disease. Knowing the MMP cleavage preferences is essential for a better understanding of the MMP functions and design of selective inhibitors. To elucidate the cleavage preferences of MMPs, we employed a high-throughput multiplexed peptide-centric profiling technology involving the cleavage of 18,583 peptides by 18 proteinases from the main sub-groups of the MMP family. Our results enabled comparison of the MMP substrates on a global scale, leading to the most efficient and selective substrates. The data validated the accuracy of our cleavage prediction software. This software allows us and others to locate, with nearly 100% accuracy, the MMP cleavage sites in the peptide sequences. In addition to increasing our understanding of both the selectivity and the redundancy of the MMP family, our study generated a roadmap for the subsequent MMP structural-functional studies and efficient substrate and inhibitor design.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Metaloproteases/química , Metaloproteases/metabolismo , Sequência de Aminoácidos , Catálise , Humanos , Hidrólise , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Peptídeos , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
10.
J Biol Chem ; 290(6): 3693-707, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25488667

RESUMO

Neuronal glial antigen 2 (NG2) is an integral membrane chondroitin sulfate proteoglycan expressed by vascular pericytes, macrophages (NG2-Mφ), and progenitor glia of the nervous system. Herein, we revealed that NG2 shedding and axonal growth, either independently or jointly, depended on the pericellular remodeling events executed by membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14). Using purified NG2 ectodomain constructs, individual MMPs, and primary NG2-Mφ cultures, we demonstrated for the first time that MMP-14 performed as an efficient and unconventional NG2 sheddase and that NG2-Mφ infiltrated into the damaged peripheral nervous system. We then characterized the spatiotemporal relationships among MMP-14, MMP-2, and tissue inhibitor of metalloproteinases-2 in sciatic nerve. Tissue inhibitor of metalloproteinases-2-free MMP-14 was observed in the primary Schwann cell cultures using the inhibitory hydroxamate warhead-based MP-3653 fluorescent reporter. In teased nerve fibers, MMP-14 translocated postinjury toward the nodes of Ranvier and its substrates, laminin and NG2. Inhibition of MMP-14 activity using the selective, function-blocking DX2400 human monoclonal antibody increased the levels of regeneration-associated factors, including laminin, growth-associated protein 43, and cAMP-dependent transcription factor 3, thereby promoting sensory axon regeneration after nerve crush. Concomitantly, DX2400 therapy attenuated mechanical hypersensitivity associated with nerve crush in rats. Together, our findings describe a new model in which MMP-14 proteolysis regulates the extracellular milieu and presents a novel therapeutic target in the damaged peripheral nervous system and neuropathic pain.


Assuntos
Antígenos/metabolismo , Macrófagos/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Proteoglicanas/metabolismo , Animais , Axônios/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Espaço Extracelular/metabolismo , Feminino , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Células HEK293 , Humanos , Laminina/genética , Laminina/metabolismo , Células MCF-7 , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/fisiopatologia , Proteólise , Ratos , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia
11.
PLoS One ; 9(11): e113896, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25411788

RESUMO

Bacteroides fragilis causes the majority of Gram-negative anaerobic infections in the humans. The presence of a short, 6-kb, pathogenicity island in the genome is linked to enterotoxigenic B. fragilis (ETBF). The role of the enterotoxin in B. fragilis virulence, however, remains to be determined, as the majority of clinical isolates lack ETBF genes and healthy individuals carry enterotoxin-positive B. fragilis. The island encodes secretory metalloproteinase II (MPII) and one of three homologous enterotoxigenic fragilysin isoenzymes (FRA; also termed B. fragilis toxin or BFT). The secretory metalloproteinases expressed from the genes on the B. fragilis pathogenicity island may have pathological importance within the gut, not linked to diarrhea. MPII and FRA are counter-transcribed in the bacterial genome, implying that regardless of their structural similarity and overlapping cleavage preferences these proteases perform distinct and highly specialized functions in the course of B. fragilis infection. The earlier data by us and others have demonstrated that FRA cleaves cellular E-cadherin, an important adherens junction protein, and weakens cell-to-cell contacts. Using E-cadherin-positive and E-cadherin-deficient cancer cells, and the immunostaining, direct cell binding and pull-down approaches, we, however, demonstrated that MPII via its catalytic domain efficiently binds, rather than cleaves, E-cadherin. According to our results, E-cadherin is an adherens junction cellular receptor, rather than a proteolytic target, of the B. fragilis secretory MPII enzyme. As a result of the combined FRA and MPII proteolysis, cell-to-cell contacts and adherens junctions are likely to weaken further.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides fragilis/metabolismo , Caderinas/metabolismo , Metaloproteases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteroides fragilis/genética , Bacteroides fragilis/patogenicidade , Domínio Catalítico , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Genoma Bacteriano , Ilhas Genômicas , Células HCT116 , Células HT29 , Humanos , Células MCF-7 , Metaloendopeptidases/química , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Metaloproteases/química , Metaloproteases/genética , Microscopia de Fluorescência , Ligação Proteica , Proteólise , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Virulência
12.
J Biol Chem ; 288(48): 34956-67, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24145028

RESUMO

Enterotoxigenic anaerobic Bacteroides fragilis is a significant source of inflammatory diarrheal disease and a risk factor for colorectal cancer. Two distinct metalloproteinase types (the homologous 1, 2, and 3 isoforms of fragilysin (FRA1, FRA2, and FRA3, respectively) and metalloproteinase II (MPII)) are encoded by the B. fragilis pathogenicity island. FRA was demonstrated to be important to pathogenesis, whereas MPII, also a potential virulence protein, remained completely uncharacterized. Here, we, for the first time, extensively characterized MPII in comparison with FRA3, a representative of the FRA isoforms. We employed a series of multiplexed peptide cleavage assays to determine substrate specificity and proteolytic characteristics of MPII and FRA. These results enabled implementation of an efficient assay of MPII activity using a fluorescence-quenched peptide and contributed to structural evidence for the distinct substrate cleavage preferences of MPII and FRA. Our data imply that MPII specificity mimics the dibasic Arg↓Arg cleavage motif of furin-like proprotein convertases, whereas the cleavage motif of FRA (Pro-X-X-Leu-(Arg/Ala/Leu)↓) resembles that of human matrix metalloproteinases. To the best of our knowledge, MPII is the first zinc metalloproteinase with the dibasic cleavage preferences, suggesting a high level of versatility of metalloproteinase proteolysis. Based on these data, we now suggest that the combined (rather than individual) activity of MPII and FRA is required for the overall B. fragilis virulence in vivo.


Assuntos
Bacteroides fragilis/genética , Inflamação/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloendopeptidases/metabolismo , Sequência de Aminoácidos , Bacteroides fragilis/patogenicidade , Ilhas Genômicas/genética , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloendopeptidases/genética , Microbiota , Neoplasias/genética , Neoplasias/patologia , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Proteólise , Especificidade por Substrato
13.
J Biol Chem ; 288(28): 20568-80, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23733191

RESUMO

Proteolytic activity of cell surface-associated MT1-matrix metalloproteinase (MMP) (MMP-14) is directly related to cell migration, invasion, and metastasis. MT1-MMP is regulated as a proteinase by activation and conversion of the latent proenzyme into the active enzyme, and also via inhibition by tissue inhibitors of MMPs (TIMPs) and self-proteolysis. MT1-MMP is also regulated as a membrane protein through its internalization and recycling. Routine immunohistochemistry, flow cytometry, reverse transcription-PCR, and immunoblotting methodologies do not allow quantitative imaging and assessment of the cell-surface levels of the active, TIMP-free MT1-MMP enzyme. Here, we developed a fluorescent reporter prototype that targets the cellular active MT1-MMP enzyme alone. The reporter (MP-3653) represents a liposome tagged with a fluorochrome and functionalized with a PEG chain spacer linked to an inhibitory hydroxamate warhead. Our studies using the MP-3653 reporter and its inactive derivative demonstrated that MP-3653 can be efficiently used not only to visualize the trafficking of MT1-MMP through the cell compartment, but also to quantify the femtomolar range amounts of the cell surface-associated active MT1-MMP enzyme in multiple cancer cell types, including breast carcinoma, fibrosarcoma, and melanoma. Thus, the levels of the naturally expressed, fully functional, active cellular MT1-MMP enzyme are roughly equal to 1 × 10(5) molecules/cell, whereas these levels are in a 1 × 10(6) range in the cells with the enforced MT1-MMP expression. We suggest that the reporter we developed will contribute to the laboratory studies of MT1-MMP and then, ultimately, to the design of novel, more efficient prognostic approaches and personalized cancer therapies.


Assuntos
Metaloproteinase 14 da Matriz/metabolismo , Imagem Molecular/métodos , Neoplasias/enzimologia , Imagem Óptica/métodos , Animais , Ligação Competitiva , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Fluoresceínas/química , Corantes Fluorescentes/química , Células HEK293 , Humanos , Lipossomos/química , Lipossomos/metabolismo , Células MCF-7 , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/genética , Microscopia de Fluorescência , Mutação , Neoplasias/genética , Neoplasias/patologia , Compostos Orgânicos/química , Ligação Proteica , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo
14.
Cancer Res ; 72(9): 2339-49, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22406620

RESUMO

Membrane type-1 matrix metalloproteinase (MT1-MMP) is a promising drug target in malignancy. The structure of MT1-MMP includes the hemopexin domain (PEX) that is distinct from and additional to the catalytic domain. Current MMP inhibitors target the conserved active site in the catalytic domain and, as a result, repress the proteolytic activity of multiple MMPs instead of MT1-MMP alone. In our search for noncatalytic inhibitors of MT1-MMP, we compared the protumorigenic activity of wild-type MT1-MMP with an MT1-MMP mutant lacking PEX (ΔPEX). In contrast to MT1-MMP, ΔPEX did not support tumor growth in vivo, and its expression resulted in small fibrotic tumors that contained increased levels of collagen. Because these findings suggested an important role for PEX in tumor growth, we carried out an inhibitor screen to identify small molecules targeting the PEX domain of MT1-MMP. Using the Developmental Therapeutics Program (National Cancer Institute/NIH), virtual ligand screening compound library as a source and the X-ray crystal structure of PEX as a target, we identified and validated a novel PEX inhibitor. Low dosage, intratumoral injections of PEX inhibitor repressed tumor growth and caused a fibrotic, ΔPEX-like tumor phenotype in vivo. Together, our findings provide a preclinical proof of principle rationale for the development of novel and selective MT1-MMP inhibitors that specifically target the PEX domain.


Assuntos
Hemopexina/química , Inibidores de Metaloproteinases de Matriz , Inibidores de Proteases/farmacologia , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/fisiologia , Feminino , Humanos , Metaloproteinase 14 da Matriz/biossíntese , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Estrutura Terciária de Proteína , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Biol Chem ; 286(23): 21002-12, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518756

RESUMO

Because of their important function, matrix metalloproteinases (MMPs) are promising drug targets in multiple diseases, including malignancies. The structure of MMPs includes a catalytic domain, a hinge, and a hemopexin domain (PEX), which are followed by a transmembrane and cytoplasmic tail domains or by a glycosylphosphatidylinositol linker in membrane-type MMPs (MT-MMPs). TIMPs-1, -2, -3, and -4 are potent natural regulators of the MMP activity. These are the inhibitory N-terminal and the non-inhibitory C-terminal structural domains in TIMPs. Based on our structural modeling, we hypothesized that steric clashes exist between the non-inhibitory C-terminal domain of TIMPs and the PEX of MMPs. Conversely, a certain mobility of the PEX relative to the catalytic domain is required to avoid these obstacles. Because of its exceedingly poor association constant and, in contrast with TIMP-2, TIMP-1 is inefficient against MT1-MMP. We specifically selected an MT1-MMP·TIMP-1 pair to test our hypothesis, because any improvement of the inhibitory potency would be readily recorded. We characterized the domain-swapped MT1-MMP chimeras in which the PEX of MMP-2 (that forms a complex with TIMP-2) and of MMP-9 (that forms a complex with TIMP-1) replaced the original PEX in the MT1-MMP structure. In contrast with the wild-type MT1-MMP, the diverse proteolytic activities of the swapped-PEX chimeras were then inhibited by both TIMP-1 and TIMP-2. Overall, our studies suggest that the structural parameters of both domains of TIMPs have to be taken into account for their re-engineering to harness the therapeutic in vivo potential of the novel TIMP-based MMP antagonists with constrained selectivity.


Assuntos
Colagenases/química , Inibidores de Metaloproteinases de Matriz , Modelos Moleculares , Inibidores Teciduais de Metaloproteinases/química , Animais , Células CHO , Colagenases/genética , Colagenases/metabolismo , Cricetinae , Cricetulus , Humanos , Camundongos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo
16.
PLoS One ; 5(6): e11305, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20585585

RESUMO

Furin, a specialized endoproteinase, transforms proproteins into biologically active proteins. Furin function is important for normal cells and also in multiple pathologies including malignancy and anthrax. Furin is believed to cycle between the Golgi compartment and the cell surface. Processing of anthrax protective antigen-83 (PA83) by the cells is considered thus far as evidence for the presence of substantial levels of cell-surface furin. To monitor furin, we designed a cleavage-activated FRET biosensor in which the Enhanced Cyan and Yellow Fluorescent Proteins were linked by the peptide sequence SNSRKKR / STSAGP derived from anthrax PA83. Both because of the sensitivity and selectivity of the anthrax sequence to furin proteolysis and the FRET-based detection, the biosensor recorded the femtomolar levels of furin in the in vitro reactions and cell-based assays. Using the biosensor that was cell-impermeable because of its size and also by other relevant methods, we determined that exceedingly low levels, if any, of cell-surface furin are present in the intact cells and in the cells with the enforced furin overexpression. This observation was in a sharp contrast with the existing concepts about the furin presentation on cell surfaces and anthrax disease mechanism. We next demonstrated using cell-based tests that PA83, in fact, was processed by furin in the extracellular milieu and that only then the resulting PA63 bound the anthrax toxin cell-surface receptors. We also determined that the biosensor, but not the conventional peptide substrates, allowed continuous monitoring of furin activity in cancer cell extracts. Our results suggest that there are no physiologically-relevant levels of cell-surface furin and, accordingly, that the mechanisms of anthrax should be re-investigated. In addition, the availability of the biosensor is a foundation for non-invasive monitoring of furin activity in cancer cells. Conceptually, the biosensor we developed may serve as a prototype for other proteinase-activated biosensors.


Assuntos
Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Técnicas Biossensoriais , Furina/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Primers do DNA , Transferência Ressonante de Energia de Fluorescência , Furina/genética , Furina/isolamento & purificação , Humanos , Hidrólise , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Processamento de Proteína Pós-Traducional
17.
Int J Biochem Cell Biol ; 42(6): 987-95, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20197107

RESUMO

Furin and related proprotein convertases cleave the multibasic motifs R-X-R/K/X-R in the precursor proteins and, as a result, transform the latent proproteins into biologically active proteins and peptides. Furin is present both in the intracellular secretory pathway and at the cell surface. Intracellular furin processes its multiple normal cellular targets in the Golgi and secretory vesicle compartments while cell-surface furin appears to be essential only for the processing of certain pathogenic proteins and, importantly, anthrax. To design potent, safe and selective inhibitors of furin, we evaluated the potency and selectivity of the derivatized peptidic inhibitors modeled from the extended furin cleavage sequence of avian influenza A H5N1. We determined that the N- and C-terminal modifications of the original RARRRKKRT inhibitory scaffold produced selective and potent, nanomolar range, inhibitors of furin. These inhibitors did not interfere with the normal cellular function of furin because of the likely functional redundancy existing between furin and other proprotein convertases. These furin inhibitors, however, were highly potent in blocking the furin-dependent cell-surface processing of anthrax protective antigen-83 both in vitro and cell-based assays and in vivo. We conclude that the inhibitors we have designed have a promising potential as selective anthrax inhibitors, without affecting major cell functions.


Assuntos
Antraz/metabolismo , Antígenos de Bactérias/metabolismo , Bacillus anthracis/fisiologia , Toxinas Bacterianas/metabolismo , Furina/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Antraz/prevenção & controle , Vacinas contra Antraz , Linhagem Celular Tumoral , Clonagem Molecular , Biologia Computacional , Drosophila , Humanos , Fragmentos de Peptídeos/síntese química , Especificidade por Substrato
18.
J Biol Chem ; 285(21): 16076-86, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20308072

RESUMO

Ubiquitously expressed membrane type-1 matrix metalloproteinase (MT1-MMP), an archetype member of the MMP family, binds tissue inhibitor of metalloproteinases-2 (TIMP-2), activates matrix metalloproteinase-2 (MMP-2), and stimulates cell migration in various cell types. In contrast with MT1-MMP, the structurally similar MT6-MMP associates with the lipid raft compartment of the plasma membrane using a GPI anchor. As a result, MT6-MMP is functionally distinct from MT1-MMP. MT6-MMP is insufficiently characterized as yet. In addition, a number of its biochemical features are both conflicting and controversial. To reassess the biochemical features of MT6-MMP, we have expressed the MT6-MMP construct tagged with a FLAG tag in breast carcinoma MCF-7 and fibrosarcoma HT1080 cells. We then used phosphatidylinositol-specific phospholipase C to release MT6-MMP from the cell surface and characterized the solubilized MT6-MMP fractions. We now are confident that cellular MT6-MMP partially exists in its complex with TIMP-2. Both TIMP-1 and TIMP-2 are capable of inhibiting the proteolytic activity of MT6-MMP. MT6-MMP does not stimulate cell migration. MT6-MMP, however, generates a significant level of gelatinolysis of the fluorescein isothiocyanate-labeled gelatin and exhibits an intrinsic, albeit low, ability to activate MMP-2. As a result, it is exceedingly difficult to record the activation of MMP-2 by cellular MT6-MMP. Because of its lipid raft localization, cellular MT6-MMP is inefficiently internalized. MT6-MMP is predominantly localized in the cell-to-cell junctions. Because MT6-MMP has been suggested to play a role in disease, including cancer and autoimmune multiple sclerosis, the identity of its physiologically relevant cleavage targets remains to be determined.


Assuntos
Glicosilfosfatidilinositóis/metabolismo , Junções Intercelulares/enzimologia , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Microdomínios da Membrana/enzimologia , Complexos Multiproteicos/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Ativação Enzimática , Proteínas Ligadas por GPI , Glicosilfosfatidilinositóis/genética , Humanos , Junções Intercelulares/genética , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinases da Matriz Associadas à Membrana/genética , Microdomínios da Membrana/genética , Esclerose Múltipla/enzimologia , Esclerose Múltipla/genética , Complexos Multiproteicos/genética , Neoplasias/enzimologia , Neoplasias/genética , Inibidor Tecidual de Metaloproteinase-2/genética , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
19.
Cancer Res ; 70(6): 2204-12, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20197470

RESUMO

Both Src kinase and membrane type 1 matrix metalloproteinase (MT1-MMP) play critical roles in cancer invasion and metastasis. It is not clear, however, how the spatiotemporal activation of these two critical enzymes is coordinated in response to an oncogenic epithelial growth factor (EGF) stimulation. Here, we have visualized the activities of Src and MT1-MMP concurrently in a single live cell by combining two fluorescence resonance energy transfer (FRET) pairs with distinct spectra: (a) cyan fluorescent protein (CFP) and yellow FP (YFP), and (b) orange FP (mOrange2) and red FP (mCherry). The new FRET pair, mOrange2 and mCherry, was first characterized in vitro and in cultured mammalian cells. When integrated with the CFP/YFP pair, this new pair allowed the revelation of an immediate, rapid, and relatively dispersed Src activity. In contrast, the MT1-MMP activity displayed a slow increase at the cell periphery, although Src was shown to play a role upstream to MT1-MMP globally. This difference in the activation patterns of MT1-MMP and Src in response to EGF is further confirmed using an optimized MT1-MMP biosensor capable of being rapidly cleaved by MT1-MMP. The results indicate that although Src and MT1-MMP act globally in the same signaling pathway, their activations differ in space and time upon EGF stimulation, possibly mediated by different sets of intermediates at different subcellular locations. Our results also showed the potential of mOrange2/mCherry as a new FRET pair, together with the popular variants of CFP and YFP, for the simultaneous visualization of multiple molecular activities in a single live cell.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Proteínas Luminescentes/química , Metaloproteinase 14 da Matriz/análise , Quinases da Família src/análise , Técnicas Biossensoriais/métodos , Células HeLa , Humanos , Metaloproteinase 14 da Matriz/metabolismo , Frações Subcelulares/química , Frações Subcelulares/metabolismo , Quinases da Família src/metabolismo
20.
Int J Cancer ; 126(5): 1067-78, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19551841

RESUMO

Both invasion-promoting MT1-MMP and its physiological inhibitor TIMP-2 play a significant role in tumorigenesis and are identified in the most aggressive cancers. Despite its antiproteolytic effects in vitro, clinical data suggest that TIMP-2 expression is positively associated with tumor recurrence, thus emphasizing the wide-ranging role of TIMP-2 in malignancies. To shed light on this role of TIMP-2, we report that low concentrations of TIMP-2, by interacting with MT1-MMP (a specific membrane receptor of TIMP-2), induce the MEK/ERK signaling cascade in fibrosarcoma HT1080 cells which express MT1-MMP naturally. TIMP-2 binding with cell surface-associated MT1-MMP stimulates phosphorylation of MEK1/2, which is upstream of ERK1/2, and the ERK1/2 substrate p90RSK. Consistent with volumes of literature, we confirmed that the activation of ERK stimulated cell migration. Both the transcriptional silencing of MT1-MMP and the inhibition of MEK1/2 reversed the signaling effects of TIMP-2/MT1-MMP while the active site-targeting MMP inhibitor GM6001 did not. Our data suggest that both the interactions of TIMP-2 with MT1-MMP, which activate the pro-migratory ERK signaling cascade,and the conventional inhibition of MT1-MMP's catalytic activity by TIMP-2, play a role in the invasion-promoting function of MT1-MMP. The TIMP-2-induced stimulation of ERK signaling in cancer cells explains the direct, as opposed to the inverse, association of TIMP-2 expression with poor prognosis in cancer.


Assuntos
Movimento Celular/fisiologia , Metaloproteinase 14 da Matriz/metabolismo , Invasividade Neoplásica , Transdução de Sinais/fisiologia , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Western Blotting , Linhagem Celular Tumoral , Ativação Enzimática/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , MAP Quinase Quinase Quinases/metabolismo , Fosforilação , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA