Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 303(1): G93-102, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22538401

RESUMO

Necrotizing enterocolitis (NEC) is an inflammatory bowel necrosis of premature infants. In tissue samples of NEC, we identified numerous macrophages and a few neutrophils but not many lymphocytes. We hypothesized that these pathoanatomic characteristics of NEC represent a common tissue injury response of the gastrointestinal tract to a variety of insults at a specific stage of gut development. To evaluate developmental changes in mucosal inflammatory response, we used trinitrobenzene sulfonic acid (TNBS)-induced inflammation as a nonspecific insult and compared mucosal injury in newborn vs. adult mice. Enterocolitis was induced in 10-day-old pups and adult mice (n = 25 animals per group) by administering TNBS by gavage and enema. Leukocyte populations were enumerated in human NEC and in murine TNBS-enterocolitis using quantitative immunofluorescence. Chemokine expression was measured using quantitative polymerase chain reaction, immunoblots, and immunohistochemistry. Macrophage recruitment was investigated ex vivo using intestinal tissue-conditioned media and bone marrow-derived macrophages in a microchemotaxis assay. Similar to human NEC, TNBS enterocolitis in pups was marked by a macrophage-rich leukocyte infiltrate in affected tissue. In contrast, TNBS-enterocolitis in adult mice was associated with pleomorphic leukocyte infiltrates. Macrophage precursors were recruited to murine neonatal gastrointestinal tract by the chemokine CXCL5, a known chemoattractant for myeloid cells. We also demonstrated increased expression of CXCL5 in surgically resected tissue samples of human NEC, indicating that a similar pathway was active in NEC. We concluded that gut mucosal injury in the murine neonate is marked by a macrophage-rich leukocyte infiltrate, which contrasts with the pleomorphic leukocyte infiltrates in adult mice. In murine neonatal enterocolitis, macrophages were recruited to the inflamed gut mucosa by the chemokine CXCL5, indicating that CXCL5 and its cognate receptor CXCR2 merit further investigation as potential therapeutic targets in NEC.


Assuntos
Mucosa Intestinal/patologia , Macrófagos/fisiologia , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Western Blotting , Quimiocina CXCL5/fisiologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Quimiotaxia de Leucócito/fisiologia , Eletroforese em Gel de Gradiente Desnaturante , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Recém-Nascido , Recém-Nascido Prematuro , Inflamação/patologia , Enteropatias/induzido quimicamente , Enteropatias/patologia , Mucosa Intestinal/citologia , Camundongos , Infiltração de Neutrófilos/fisiologia , Reação em Cadeia da Polimerase , Fatores de Risco , Ácido Trinitrobenzenossulfônico
2.
Channels (Austin) ; 1(2): 124-34, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18690021

RESUMO

Neurotransmitter and hormone regulation of cellular function can result from a concomitant stimulation of different signaling pathways. Signaling cascades are strongly regulated during disease and are often targeted by commonly used drugs. Crosstalk of different signaling pathways can have profound effects on the regulation of cell excitability. Members of all the three main structural families of potassium channels: inward-rectifiers, voltage-gated and 2-P domain, have been shown to be regulated by direct phosphorylation and Gq-coupled receptor activation. Here we test members of each of the three families, Kir3.1/Kir3.4, KCNQ1/KCNE1 and TREK-1 channels, all of which have been shown to be regulated directly by phosphatidylinositol bisphosphate (PIP2). The three channels are inhibited by activation of Gq-coupled receptors and are differentially regulated by protein kinase A (PKA). We show that Gq-coupled receptor regulation can be physiologically modulated directly through specific channel phosphorylation sites. Our results suggest that PKA phosphorylation of these channels affects Gq-coupled receptor inhibition through modulation of the channel sensitivity to PIP2.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio/fisiologia , Fosfolipases Tipo C/metabolismo , Acetilcolina/farmacologia , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Eletrofisiologia , Feminino , Transferência Ressonante de Energia de Fluorescência , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Humanos , Hidrólise , Rim/citologia , Microscopia Confocal , Oócitos , Técnicas de Patch-Clamp , Fosfatidilinositol 4,5-Difosfato/farmacologia , Canais de Potássio/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Transfecção , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA