Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Int J Med Sci ; 21(6): 983-993, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774750

RESUMO

Previous studies have highlighted the protective effects of pyruvate kinase M2 (PKM2) overexpression in septic cardiomyopathy. In our study, we utilized cardiomyocyte-specific PKM2 knockout mice to further investigate the role of PKM2 in attenuating LPS-induced myocardial dysfunction, focusing on mitochondrial biogenesis and prohibitin 2 (PHB2). Our findings confirmed that the deletion of PKM2 in cardiomyocytes significantly exacerbated LPS-induced myocardial dysfunction, as evidenced by impaired contractile function and relaxation. Additionally, the deletion of PKM2 intensified LPS-induced myocardial inflammation. At the molecular level, LPS triggered mitochondrial dysfunction, characterized by reduced ATP production, compromised mitochondrial respiratory complex I/III activities, and increased ROS production. Intriguingly, the absence of PKM2 further worsened LPS-induced mitochondrial damage. Our molecular investigations revealed that LPS disrupted mitochondrial biogenesis in cardiomyocytes, a disruption that was exacerbated by the absence of PKM2. Given that PHB2 is known as a downstream effector of PKM2, we employed PHB2 adenovirus to restore PHB2 levels. The overexpression of PHB2 normalized mitochondrial biogenesis, restored mitochondrial integrity, and promoted mitochondrial function. Overall, our results underscore the critical role of PKM2 in regulating the progression of septic cardiomyopathy. PKM2 deficiency impeded mitochondrial biogenesis, leading to compromised mitochondrial integrity, increased myocardial inflammation, and impaired cardiac function. The overexpression of PHB2 mitigated the deleterious effects of PKM2 deletion. This discovery offers a novel insight into the molecular mechanisms underlying septic cardiomyopathy and suggests potential therapeutic targets for intervention.


Assuntos
Cardiomiopatias , Camundongos Knockout , Mitocôndrias Cardíacas , Miócitos Cardíacos , Proibitinas , Piruvato Quinase , Sepse , Animais , Cardiomiopatias/patologia , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/etiologia , Camundongos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Sepse/metabolismo , Sepse/patologia , Sepse/genética , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Humanos , Biogênese de Organelas , Lipopolissacarídeos/toxicidade , Masculino , Modelos Animais de Doenças
2.
J Neurosurg ; : 1-10, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38759234

RESUMO

OBJECTIVE: Diabetes is often linked to poorer outcomes in patients with moyamoya disease (MMD). However, experience has shown that certain individuals with diabetes have favorable outcomes after encephaloduroarteriosynangiosis (EDAS). The authors aimed to develop a nomogram to predict good neoangiogenesis in patients with MMD and type 2 diabetes mellitus (T2DM) to aid neurosurgeons in the identification of suitable candidates for EDAS. METHODS: Adults with MMD and T2DM who underwent EDAS between June 2004 and December 2018 were included in the analysis. In total, 126 patients (213 hemispheres) with MMD and T2DM from the Fifth Medical Centre of the Chinese PLA General Hospital were included and randomly divided into training (152 hemispheres) and internal validation (61 hemispheres) cohorts at a ratio of 7:3. Univariate logistic and least absolute shrinkage and selection operator regression analyses were used to identify the significant factors associated with good neoangiogenesis, which were used to develop a nomogram. The discrimination, calibration, and clinical utility were assessed. RESULTS: A total of 213 hemispheres in 126 patients were reviewed, including 152 (71.36%) hemispheres with good postoperative collateral formation and 61 (28.64%) with poor postoperative collateral formation. The authors selected 4 predictors (FGD5 rs11128722, VEGFA rs9472135, Suzuki stage, and internal carotid artery [ICA] moyamoya vessels) for nomogram development. The C-indices of the nomogram in the training and internal validation cohorts were 0.873 and 0.841, respectively. The nomogram exhibited a sensitivity of 84.5% and specificity of 81.0%. The positive and negative predictive values were 92.1% and 66.7%, respectively. The calibration curves indicated high predictive accuracy, and receiver operating characteristic curve analysis showed the superiority of the nomogram. The decision-making analysis validated the fitness and clinical application value of this nomogram. Then a web-based calculator to facilitate clinical application was generated. CONCLUSIONS: The nomogram developed in this study accurately predicted neoangiogenesis in patients with MMD and T2DM after EDAS and may assist neurosurgeons in identifying suitable candidates for indirect revascularization surgery.

3.
Adv Mater ; : e2313212, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670140

RESUMO

Cancer stem cells (CSCs) are one of the determinants of tumor heterogeneity and are characterized by self-renewal, high tumorigenicity, invasiveness, and resistance to various therapies. To overcome the resistance of traditional tumor therapies resulting from CSCs, a strategy of double drug sequential therapy (DDST) for CSC-enriched tumors is proposed in this study and is realized utilizing the developed double-layered hollow mesoporous cuprous oxide nanoparticles (DL-HMCONs). The high drug-loading contents of camptothecin (CPT) and all-trans retinoic acid (ATRA) demonstrate that the DL-HMCON can be used as a generic drug delivery system. ATRA and CPT can be sequentially loaded in and released from CPT3@ATRA3@DL-HMCON@HA. The DDST mechanisms of CPT3@ATRA3@DL-HMCON@HA for CSC-containing tumors are demonstrated as follows: 1) the first release of ATRA from the outer layer induces differentiation from CSCs with high drug resistance to non-CSCs with low drug resistance; 2) the second release of CPT from the inner layer causes apoptosis of non-CSCs; and 3) the third release of Cu+ from DL-HMCON itself triggers the Fenton-like reaction and glutathione depletion, resulting in ferroptosis of non-CSCs. This CPT3@ATRA3@DL-HMCON@HA is verified to possess high DDST efficacy for CSC-enriched tumors with high biosafety.

4.
Am J Cancer Res ; 14(2): 407-428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455407

RESUMO

Thyroid cancer can be classified into three different types based on the degree of differentiation: well-differentiated, poorly differentiated, and anaplastic thyroid carcinoma. Well-differentiated thyroid cancer refers to cancer cells that closely resemble normal thyroid cells, while poorly differentiated and anaplastic thyroid carcinoma are characterized by cells that have lost their resemblance to normal thyroid cells. Advanced thyroid carcinoma, regardless of its degree of differentiation, is known to have a higher likelihood of disease progression and is generally associated with a poor prognosis. However, the process through which well-differentiated thyroid carcinoma transforms into anaplastic thyroid carcinoma, also known as "dedifferentiation", has been a subject of intensive research. In recent years, there have been significant breakthroughs in the treatment of refractory advanced thyroid cancer. Clinical studies have been conducted to evaluate the efficacy and safety of molecular targeted drugs and immune checkpoint inhibitors in the treatment of dedifferentiated thyroid cancer. These drugs work by targeting specific molecules or proteins in cancer cells to inhibit their growth or by enhancing the body's immune response against the cancer cells. This article aims to explore some of the possible mechanisms behind the dedifferentiation process in well-differentiated thyroid carcinoma. It also discusses the clinical effects of molecular targeted drugs and immune checkpoint inhibitors in thyroid cancer patients with different degrees of differentiation. Furthermore, it offers insights into the future trends in the treatment of advanced thyroid cancer, highlighting the potential for improved outcomes and better patient care.

5.
Cancer Rep (Hoboken) ; 7(3): e2006, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38425238

RESUMO

BACKGROUND: Breast cancer (BC) metastasis is the common cause of high mortality. Conventional prognostic criteria cannot accurately predict the BC metastasis risk. The machine learning technologies can overcome the disadvantage of conventional models. AIM: We developed a model to predict BC metastasis using the random survival forest (RSF) method. METHODS: Based on demographic data and routine clinical data, we used RSF-recursive feature elimination to identify the predictive variables and developed a model to predict metastasis using RSF method. The area under the receiver operating characteristic curve (AUROC) and Kaplan-Meier survival (KM) analyses were plotted to validate the predictive effect when C-index was plotted to assess the discrimination and Brier scores was plotted to assess the calibration of the predictive model. RESULTS: We developed a metastasis prediction model comprising three variables (pathological stage, aspartate aminotransferase, and neutrophil count) selected by RSF-recursive feature elimination. The model was reliable and stable when assessed by the AUROC (0.932 in training set and 0.905 in validation set) and KM survival analyses (p < .0001). The C-indexes (0.959) and Brier score (0.097) also validated the good predictive ability of this model. CONCLUSIONS: This model relies on routine data and examination indicators in real-time clinical practice and exhibits an accurate prediction performance without increasing the cost for patients. Using this model, clinicians can facilitate risk communication and provide precise and efficient individualized therapy to patients with breast cancer.


Assuntos
Neoplasias da Mama , Segunda Neoplasia Primária , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Área Sob a Curva , Comunicação , Contagem de Leucócitos , Aprendizado de Máquina
6.
Small ; : e2309842, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431935

RESUMO

Triple negative breast cancer (TNBC) cells have a high demand for oxygen and glucose to fuel their growth and spread, shaping the tumor microenvironment (TME) that can lead to a weakened immune system by hypoxia and increased risk of metastasis. To disrupt this vicious circle and improve cancer therapeutic efficacy, a strategy is proposed with the synergy of ferroptosis, immunosuppression reversal and disulfidptosis. An intelligent nanomedicine GOx-IA@HMON@IO is successfully developed to realize this strategy. The Fe release behaviors indicate the glutathione (GSH)-responsive degradation of HMON. The results of titanium sulfate assay, electron spin resonance (ESR) spectra, 5,5'-Dithiobis-(2-nitrobenzoic acid (DTNB) assay and T1 -weighted magnetic resonance imaging (MRI) demonstrate the mechanism of the intelligent iron atom (IA)-based cascade reactions for GOx-IA@HMON@IO, generating robust reactive oxygen species (ROS). The results on cells and mice reinforce the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis triggered by the GOx-IA@HMON@IO with the following steps: 1) GSH peroxidase 4 (GPX4) depletion by disulfidptosis; 2) IA-based cascade reactions; 3) tumor hypoxia reversal; 4) immunosuppression reversal; 5) GPX4 depletion by immunotherapy. Based on the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis, the intelligent nanomedicine GOx-IA@HMON@IO can be used for MRI-guided tumor therapy with excellent biocompatibility and safety.

7.
J Cell Mol Med ; 28(5): e18092, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303549

RESUMO

Endoplasmic reticulum stress (ERS) and unfolded protein response are the critical processes of tumour biology. However, the roles of ERS regulatory genes in pancreatic adenocarcinoma (PAAD) remain elusive. A novel ERS-related risk signature was constructed using the Lasso regression analysis. Its prognostic value, immune effect, metabolic influence, mutational feature and therapeutic correlation were comprehensively analysed through multiple bioinformatic approaches. The biofunctions of KDELR3 and YWHAZ in pancreatic cancer (PC) cells were also investigated through colony formation, Transwell assays, flow cytometric detection and a xenograft model. The upstream miRNA regulatory mechanism of KDELR3 was predicted and validated. ERS risk score was identified as an independent prognostic factor and could improve traditional prognostic model. Meanwhile, it was closely associated with metabolic reprogramming and tumour immune. High ERS risk enhanced glycolysis process and nucleotide metabolism, but was unfavourable for anti-tumour immune response. Moreover, ERS risk score could act as a potential biomarker for predicting the efficacy of ICBs. Overexpression of KDELR3 and YWHAZ stimulated the proliferation, migration and invasion of SW1990 and BxPC-3 cells. Silencing KDELR3 suppressed tumour growth in a xenograft model. miR-137 could weaken the malignant potentials of PC cells through inhibiting KDELR3 (5'-AGCAAUAA-3'). ERS risk score greatly contributed to PAAD clinical assessment. KDELR3 and YWHAZ possessed cancer-promoting capacities, showing promise as a novel treatment target.

8.
Heliyon ; 10(4): e26108, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404780

RESUMO

Objective: This study aimed to explore the long-term outcome of unilateral moyamoya disease and predict the clinical and genetic factors associated with contralateral progression in unilateral moyamoya disease. Methods: We retrospectively recruited unilateral moyamoya disease patients with available genetic data who underwent encephaloduroarteriosynangiosis (EDAS) surgery at our institution from January 2009 to November 2017. Long-term follow-up data, including clinical outcomes, angiographic features, and genetic information, were analyzed. Results: A total of 83 unilateral moyamoya disease patients with available genetic data were enrolled in our study. The mean duration of clinical follow-up was 7.9 ± 2.0 years. Among all patients, 19 patients demonstrated contralateral progression to bilateral disease. Heterozygous Ring Finger Protein 213 p.R4810K mutations occurred significantly more frequently in unilateral moyamoya disease patients with contralateral progression. Furthermore, patients with contralateral progression typically demonstrated an earlier age of onset than those with non-progressing unilateral moyamoya disease. In the contralateral progression group, posterior circulation involvement was observed in 11 (11/19, 57.9%) patients compared to 12 (12/64, 18.8%) in the non-contralateral progression group (P = 0.001). The time to peak of cerebral perfusion and neurological status showed significant postoperative improvement. Conclusion: Long-term follow-up revealed that the EDAS procedure might provide benefits for unilateral moyamoya disease patients. Ring Finger Protein 213 p.R4810K mutations, younger age, and posterior circulation involvement might predict the contralateral progression of unilateral moyamoya disease.

9.
Zhen Ci Yan Jiu ; 49(2): 127-134, 2024 Feb 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38413033

RESUMO

OBJECTIVES: To investigate the neuroprotective effect of electroacupuncture (EA) at "Quchi"(LI11) and "Zusanli"(ST36) in the rats with cerebral ischemia reperfusion injury and its influence on programmed necrosis of cerebral cortical neurons. METHODS: Sixty male SD rats were randomly divided into sham-operation group, model group, EA group and inhibitor group, with 15 rats in each group. Left middle cerebral artery occlusion model was established using the modified thread embolism method. In the sham-operation group, the carotid artery was exposed and dissociated in each rat. EA was applied to "Quchi"(LI11) and "Zusanli"(ST36) on the right side for 30 min each time, once daily for 7 days in the rats of the EA group. The rats in the inhibitor group were intraperitoneally injected with norstatin-1 (0.6 mg/kg) for consecutive 7 days. The neurological deficit score of rats in each group was observed. HE staining was adopted to detect the degree of pathological damage of the cerebral cortex in the infarction area. Using TUNEL staining, the apoptosis of cortical neurons in the infarction area was determined;the contents of tumor necrosis factor α (TNF-α), interleukin (IL)-1ß and IL-6 were detected by ELISA;the mRNA and protein expression of the receptor interacting protein-1 (RIP1), the receptor interacting protein-3 (RIP3) and the substrate mixed lineage kinase like protein (MLKL) were detected by fluorescence quantitative PCR and Western blot, respectively. RESULTS: In comparison with the sham-operation group, the neurological deficit score in the model group was higher(P<0.01);HE staining showed that there was the pathological damage in the infarction area;the neuron apoptosis rate, the contents of TNF-α, IL-1ß and IL-6, and the mRNA and protein expressions of RIP1, RIP3 and MLKL increased(P<0.01) in the model group. In the EA group, the neurological deficit score was reduced(P<0.01);HE staining showed that the pathological damage was ameliorated in the infarction area;the neuron apoptosis rate, the contents of TNF-α, IL-1ß and IL-6, and the mRNA and protein expressions of RIP1, RIP3, MLKL decreased(P<0.05, P<0.01) when compared with those in the model group. CONCLUSIONS: EA can attenuate cerebral ischemia reperfusion injury and display its neuroprotective effect probably through inhibiting programmed necrosis of cerebral cortical neurons in the rats.


Assuntos
Isquemia Encefálica , Eletroacupuntura , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/genética , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Interleucina-6 , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/terapia , Neurônios/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Necrose , Apoptose , Infarto , RNA Mensageiro , Proteínas Quinases
10.
Mar Drugs ; 22(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38393030

RESUMO

Sargassaceae, the most abundant family in Fucales, was recently formed through the merging of the two former families Sargassaceae and Cystoseiraceae. It is widely distributed in the world's oceans, notably in tropical coastal regions, with the exception of the coasts of Antarctica and South America. Numerous bioactivities have been discovered through investigations of the chemical diversity of the Sargassaceae family. The secondary metabolites with unique structures found in this family have been classified as terpenoids, phlorotannins, and steroids, among others. These compounds have exhibited potent pharmacological activities. This review describes the new discovered compounds from Sargassaceae species and their associated bioactivities, citing 136 references covering from March 1975 to August 2023.


Assuntos
Phaeophyceae , Humanos , Oceanos e Mares , Regiões Antárticas
11.
Eur Radiol ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172442

RESUMO

OBJECTIVES: Intracranial vessel wall enhancement (VWE) on high-resolution magnetic resonance imaging (HRMRI) is associated with the progression and poor prognosis of moyamoya disease (MMD). This study assessed potential risk factors for VWE in MMD. METHODS: We evaluated MMD patients using HRMRI and traditional angiography examinations. The participants were divided into VWE and non-VWE groups based on HRMRI. Logistic regression was performed to compare the risk factors for VWE in MMD. The incidence of cerebrovascular events of the different subgroups according to risk factors was compared using Kaplan-Meier survival and Cox regression. RESULTS: We included 283 MMD patients, 84 of whom had VWE on HRMRI. The VWE group had higher modified Rankin Scale scores at admission (p = 0.014) and a higher incidence of ischaemia and haemorrhage (p = 0.002) than did the non-VWE group. Risk factors for VWE included the ring finger protein 213 (RNF213) p.R4810K variant (odds ratio [OR] 2.01, 95% confidence interval [CI] 1.08-3.76, p = 0.028), hyperhomocysteinaemia (HHcy) (OR 5.08, 95% CI 2.34-11.05, p < 0.001), and smoking history (OR 3.49, 95% CI 1.08-11.31, p = 0.037). During the follow-up of 63.9 ± 13.2 months (median 65 months), 18 recurrent stroke events occurred. Cox regression showed that VWE and the RNF213 p.R4810K variant were risk factors for stroke. CONCLUSION: The RNF213 p.R4810K variant is strongly associated with VWE and poor prognosis in MMD. HHcy and smoking are independent risk factors for VWE. CLINICAL RELEVANCE STATEMENT: Vessel wall enhancement in moyamoya disease is closely associated with poor prognosis, especially related to the ring finger protein 213 p.R4810K variant, hyperhomocysteinaemia, and smoking, providing crucial risk assessment information for the clinic. KEY POINTS: • The baseline presence of vessel wall enhancement is significantly associated with poor prognosis in moyamoya disease. • The ring finger protein 213 p.R4810K variant is strongly associated with vessel wall enhancement and poor prognosis in moyamoya disease. • Hyperhomocysteinaemia and smoking are independent risk factors for vessel wall enhancement in moyamoya disease.

12.
Front Oncol ; 13: 1228199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795447

RESUMO

Background: Hepatoblastoma (HB) is the most common liver tumor in children with easy metastasis. The emergence of ferroptosis as a novel form of cell death has gained increased attention in various human cancers. However, the roles of ferroptosis-related (FR) genes in HB remain elusive. Methods: The GSE133039, GSE131329, and GSE81928 datasets were utilized for screening core FR genes in HB. Through Lasso regression analysis and using the support vector machine recursive feature elimination (SVM-RFE) algorithm, three candidate FR genes were obtained for characterizing HB. Their expression patterns and their clinical associations were explored through the 'Limma' R package, and their diagnostic potential was evaluated using ROC curves. Nitric oxide synthase 2 (NOS2) emerged as a candidate for further analyses. The CIBERSORT algorithm and GSEA dataset were used to respectively investigate the immune and metabolism effects of NOS2; the former was validated through immunofluorescence. The GSDC database was employed to analyze the correlation between NOS2 expression and the therapeutic efficacy of multiple drugs. PCR, Western blotting, colony formation assays, and Transwell experiments, were used to determine biological functions of NOS2 in HB cells. Potential upstream transcription factors of NOS2 were predicted through the TRRUST, hTFtarget, GeneCards, and JASPAR databases. Results: NQO1, SLC1A4, and NOS2 were identified as potential genes in HB and found to be significantly upregulated in tumor samples. Nevertheless, only NOS2 was closely associated with HB clinicopathological characteristics; high NOS2 expression indicated poor prognosis, metastatic tendency, and late clinical stage. Immune analyses indicated that high NOS2 expression was concomitant with decreased infiltration levels of CD8+ T cells but increased infiltration levels of macrophages. GSEA revealed that NOS2 failed to affect the enrichments of glycolysis, fatty acid metabolism, and cholesterol biosynthesis in HB. Moreover, NOS2 was positively correlated with the IC50 values of trametinib, lapatinib, and cisplatin. NOS2 overexpression promoted the proliferation, migration and invasion of HepG2 and HuH-6 cells. JUND was identified as a potential transcriptional regulator of NOS2 by binding to its promoter (5'-TTCTGACTCTTTT-3'). Conclusion: NOS2 plays a significant role in HB clinical assessments and holds promise as a novel therapeutic target.

13.
Cell Metab ; 35(11): 1915-1930.e8, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37703873

RESUMO

Weight regain after weight loss is a major challenge in the treatment of obesity. Immune cells adapt to fluctuating nutritional stress, but their roles in regulating weight regain remain unclear. Here, we identify a stem cell-like CD7+ monocyte subpopulation accumulating in the bone marrow (BM) of mice and humans that experienced dieting-induced weight loss. Adoptive transfer of CD7+ monocytes suppresses weight regain, whereas inducible depletion of CD7+ monocytes accelerates it. These cells, accumulating metabolic memories via epigenetic adaptations, preferentially migrate to the subcutaneous white adipose tissue (WAT), where they secrete fibrinogen-like protein 2 (FGL2) to activate the protein kinase A (PKA) signaling pathway and facilitate beige fat thermogenesis. Nevertheless, CD7+ monocytes gradually enter a quiescent state after weight loss, accompanied by increased susceptibility to weight regain. Notably, administration of FMS-like tyrosine kinase 3 ligand (FLT3L) remarkably rejuvenates CD7+ monocytes, thus ameliorating rapid weight regain. Together, our findings identify a unique bone marrow-derived metabolic-memory immune cell population that could be targeted to combat obesity.


Assuntos
Medula Óssea , Aumento de Peso , Humanos , Aumento de Peso/fisiologia , Medula Óssea/metabolismo , Obesidade/metabolismo , Redução de Peso , Dieta Redutora , Termogênese/fisiologia , Fibrinogênio
14.
Adv Healthc Mater ; 12(29): e2301604, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37584445

RESUMO

Previous parathyroid hormone (PTH)-related peptides (PTHrPs) cannot be used to prevent implant loosening in osteoporosis patients due to the catabolic effect of local sustained release. A novel PTHrP (PTHrP-2) that can be used locally to promote osseointegration of macroporous titanium alloy scaffold (mTAS) and counteract implant slippage in osteoporosis patients is designed. In vitro, PTHrP-2 enhances the proliferation, adhesion, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) within the mTAS. Further, it promotes proliferation, migration, angiogenesis-related protein expression, and angiogenesis in human umbilical vein endothelial cells (HUVECs). Compared to PTH(1-34), PTHrP-2 can partially weaken the osteoclast differentiation of RAW 264.7 cells. Even in an oxidative stress microenvironment, PTHrP-2 safeguards the proliferation and migration of BMSCs and HUVECs, reduces reactive oxygen species generation and mitochondrial damage, and partially preserves the angiogenesis of HUVECs. In the Sprague-Dawley (SD) rat osteoporosis model, the therapeutic benefits of PTHrP-2-releasing mTAS (mTASP2 ) and ordinary mTAS implanted for 12 weeks via micro-CT, sequential fluorescent labeling, and histology are compared. The results demonstrate that mTASP2 exhibits high bone growth rate, without osteophyte formation. Consequently, PTHrP-2 exhibits unique local synthesis properties and holds the potential for assisting the osseointegration of alloy implants in osteoporosis patients.


Assuntos
Osseointegração , Osteoporose , Ratos , Animais , Humanos , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Proteína Relacionada ao Hormônio Paratireóideo/uso terapêutico , Titânio/química , Ratos Sprague-Dawley , Osteogênese , Ligas/farmacologia , Células Endoteliais , Osteoporose/tratamento farmacológico , Impressão Tridimensional
15.
Cell Chem Biol ; 30(10): 1191-1210.e20, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37557181

RESUMO

KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer. Transcriptional and epigenetic profiling studies show reduced RNA Pol II binding and downregulation of genes involved in estrogen signaling, cell cycle, Myc and stem cell pathways associated with CTx-648 anti-tumor activity in ER-positive (ER+) breast cancer. CTx-648 treatment leads to potent tumor growth inhibition in ER+ breast cancer in vivo models, including models refractory to endocrine therapy, highlighting the potential for targeting KAT6A in ER+ breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Histonas/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral
16.
J Transl Med ; 21(1): 413, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355631

RESUMO

In recent decades, the incidence of thyroid cancer keeps growing at a shocking rate, which has aroused increasing concerns worldwide. Autophagy is a fundamental and ubiquitous biological event conserved in mammals including humans. Basically, autophagy is a catabolic process that cellular components including small molecules and damaged organelles are degraded for recycle to meet the energy needs, especially under the extreme conditions. The dysregulated autophagy has indicated to be involved in thyroid cancer progression. The enhancement of autophagy can lead to autophagic cell death during the degradation while the produced energies can be utilized by the rest of the cancerous tissue, thus this influence could be bidirectional, which plays either a tumor-suppressive or oncogenic role. Accordingly, autophagy can be suppressed by therapeutic agents and is thus regarded as a drug target for thyroid cancer treatments. In the present review, a brief description of autophagy and roles of autophagy in tumor context are given. We have addressed summary of the mechanisms and functions of autophagy in thyroid cancer. Some potential autophagy-targeted treatments are also summarized. The aim of the review is linking autophagy to thyroid cancer, so as to develop novel approaches to better control cancer progression.


Assuntos
Neoplasias , Neoplasias da Glândula Tireoide , Animais , Humanos , Neoplasias/patologia , Autofagia/fisiologia , Mamíferos
17.
STAR Protoc ; 4(2): 102177, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37086411

RESUMO

The cross talk between cancer cells and endothelial cells (ECs) within the tumor microenvironment plays a critical role in tumor progression, recurrence, and cancer stemness. Here, we present a protocol containing two in vitro approaches to study such interactions. We first describe an indirect co-culture system to study the regulation of stemness markers in cancer cells by secreted factors from ECs. We then detail a direct co-culture system to study juxtracrine communications between the cell types. For complete details on the use and execution of this protocol, please refer to Sewell-Loftin et al.1 and Guo et al.2.

18.
Blood Adv ; 7(16): 4349-4357, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37078706

RESUMO

Relapsed or refractory (r/r) mantle cell lymphoma (MCL) is an aggressive B-cell malignancy with a poor prognosis. Bruton tyrosine kinase (BTK) is a mediator of B-cell receptor signaling and is associated with the development of B-cell lymphomas. Patients with r/r MCL were enrolled in this phase 1/2 study and treated with orelabrutinib, a novel, highly selective BTK inhibitor. The median number of prior regimens was 2 (range, 1-4). The median age was 62 years (range, 37-73 years). Eligible patients received oral orelabrutinib 150 mg once daily (n = 86) or 100 mg twice daily (n = 20) until disease progression or unacceptable toxicity. A dose of 150 mg once daily was chosen as the preferred recommended phase 2 dose. After a median follow-up duration of 23.8 months, the overall response rate was 81.1%, with 27.4% achieving a complete response and 53.8% achieving a partial response. The median duration of response and progression-free survival were 22.9 and 22.0 months, respectively. The median overall survival (OS) was not reached, and the rate of OS at 24 months was 74.3%. Adverse events (AEs) occurring in >20% of patients were thrombocytopenia (34.0%), upper respiratory tract infection (27.4%), and neutropenia (24.5%). Grade ≥3 AEs were infrequent and most commonly included thrombocytopenia (13.2%), neutropenia (8.5%), and anemia (7.5%). Three patients discontinued treatment because of treatment-related adverse events (TRAEs), but no fatal TRAEs were reported. Orelabrutinib showed substantial efficacy and was well tolerated in patients with r/r MCL. This trial was registered at www.clinicaltrials.gov as #NCT03494179.


Assuntos
Linfoma de Célula do Manto , Neutropenia , Trombocitopenia , Adulto , Humanos , Pessoa de Meia-Idade , Linfoma de Célula do Manto/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Proteínas Quinases/efeitos adversos , Neutropenia/induzido quimicamente , Trombocitopenia/induzido quimicamente
19.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675267

RESUMO

A prospective source of stem cells for bone tissue engineering is adipose-derived stem cells (ADSCs), and BMP-2 has been proven to be highly effective in promoting the osteogenic differentiation of stem cells. Rarely has research been conducted on the impact of lactoferrin (LF) on ADSCs' osteogenic differentiation. As such, in this study, we examined the effects of LF and BMP-2 to assess the ability of LF to stimulate ADSCs' osteogenic differentiation. The osteogenic medium was supplemented with the LF at the following concentrations to culture ADSCs: 0, 10, 20, 50, 100, and 500 µg/mL. The Cell Counting Kit-8 (CCK-8) assay was used to measure the proliferation of ADSCs. Calcium deposition, alkaline phosphatase (ALP) staining, real-time polymerase chain reaction (RT-PCR), and an ALP activity assay were used to establish osteogenic differentiation. RNA sequencing analysis was carried out to investigate the mechanism of LF boosting the osteogenic development of ADSCs. In the concentration range of 0-100 µg/mL, LF concentration-dependently increased the proliferative vitality and osteogenic differentiation of ADSCs. At a dose of 500 µg/mL, LF sped up and enhanced differentiation, but inhibited ADSCs from proliferating. LF (100 and 500 µg/mL) produced more substantial osteoinductive effects than BMP-2. The PI3 kinase/AKT (PI3K/AKT) and IGF-R1 signaling pathways were significantly activated in LF-treated ADSCs. The in vitro study results showed that LF could effectively promote osteogenic differentiation of ADSCs by activating the PI3K/AKT and IGF-R1 pathways. In our in vitro investigation, an LF concentration of 100 µg/mL was optimal for osteoinduction and proliferation. Our study suggests that LF is an attractive alternative to BMP-2 in bone tissue engineering. As a bioactive molecule capable of inducing adipose stem cells to form osteoblasts, LF is expected to be clinically used in combination with biomaterials as an innovative molecular and cellular therapy to promote bone repair.


Assuntos
Tecido Adiposo , Osteogênese , Tecido Adiposo/metabolismo , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estudos Prospectivos , Células Cultivadas , Células-Tronco/metabolismo , Diferenciação Celular
20.
Cells ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36497140

RESUMO

Pancreatic neuroendocrine tumors (pNETs) are extremely diverse and highly vascularized neoplasms that arise from endocrine cells in the pancreas. The pNETs harbor a subpopulation of stem cell-like malignant cells, known as cancer stem cells (CSCs), which contribute to intratumoral heterogeneity and promote tumor maintenance and recurrence. In this study, we demonstrate that CSCs in human pNETs co-express protein kinase PKD1 and CD44. We further identify PKD1 signaling as a critical pathway in the control of CSC maintenance in pNET cells. PKD1 signaling regulates the expression of a CSC- and EMT-related gene signature and promotes CSC self-renewal, likely leading to the preservation of a subpopulation of CSCs at an intermediate EMT state. This suggests that the PKD1 signaling pathway may be required for the development of a unique CSC phenotype with plasticity and partial EMT. Given that the signaling networks connected with CSC maintenance and EMT are complex, and extend through multiple levels of regulation, this study provides insight into signaling regulation of CSC plasticity and partial EMT in determining the fate of CSCs. Inhibition of the PKD1 pathway may facilitate the elimination of specific CSC subsets, thereby curbing tumor progression and metastasis.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Células-Tronco Neoplásicas , Proteína Quinase C , Humanos , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Proteína Quinase C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA