Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
In Vitro Cell Dev Biol Anim ; 60(4): 374-381, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38592596

RESUMO

The purpose of this research was to investigate whether or not avicularin (AVL) possesses any anticancer properties when tested against lung cancer. In the beginning, the effect that it had on the cellular viability of A549 cells was investigated, and it was discovered that AVL has a considerable negative impact on cellular viability. Following that, an investigation using flow cytometry was carried out to investigate its function in the process of apoptosis and the cell cycle of A549 cells. It has been discovered that AVL significantly promotes apoptosis and stops the cell cycle at the G2/M phase. The colony-forming capacity of A549 cells was observed to be greatly suppressed as the AVL concentration increased compared to the group that received no treatment. In addition to this, the benzo(a)pyrene in vivo model was established in order to investigate the pharmacological value of AVL. The findings revealed that AVL greatly prevented the formation of pro-inflammatory cytokines, in addition to the reduction in oxidative stress, which was evidenced by a reduction in the concentration of TNF-α, IL-1ß, IL-6, and MDA with an improvement in the concentration of SOD and GPx, respectively. Our results successfully demonstrated the pharmacological benefit of avicularin against lung cancer, and it has been suggested that it showed a multifactorial effect.


Assuntos
Apoptose , Inflamação , Neoplasias Pulmonares , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Humanos , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Animais , Inflamação/patologia , Inflamação/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Camundongos
2.
Chem Commun (Camb) ; 60(39): 5185-5188, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38647133

RESUMO

Ethylene glycol electrooxidation catalyzed by Pd nanoparticles was found to be largely improved by Bi2Te3 nanosheets both in the dark and under visible light irradiation.

3.
Circ Heart Fail ; 17(3): e010569, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38410978

RESUMO

BACKGROUND: Exercise training can promote cardiac rehabilitation, thereby reducing cardiovascular disease mortality and hospitalization rates. MicroRNAs (miRs) are closely related to heart disease, among which miR-574-3p plays an important role in myocardial remodeling, but its role in exercise-mediated cardioprotection is still unclear. METHODS: A mouse myocardial hypertrophy model was established by transverse aortic coarctation, and a 4-week swimming exercise training was performed 1 week after the operation. After swimming training, echocardiography was used to evaluate cardiac function in mice, and histopathologic staining was used to detect cardiac hypertrophy, myocardial fibrosis, and cardiac inflammation. Quantitative real-time polymerase chain reaction was used to detect the expression levels of miR-574-3p and cardiac hypertrophy markers. Western blotting detected the IL-6 (interleukin-6)/JAK/STAT inflammatory signaling pathway. RESULTS: Echocardiography and histochemical staining found that aerobic exercise significantly improved pressure overload-induced myocardial hypertrophy (n=6), myocardial interstitial fibrosis (n=6), and cardiac inflammation (n=6). Quantitative real-time polymerase chain reaction detection showed that aerobic exercise upregulated the expression level of miR-574-3p (n=6). After specific knockdown of miR-574-3p in mouse hearts with adeno-associated virus 9 using cardiac troponin T promoter, we found that the protective effect of exercise training on the heart was significantly reversed. Echocardiography and histopathologic staining showed that inhibiting the expression of miR-574-3p could partially block the effects of aerobic exercise on cardiac function (n=6), cardiomyocyte cross-sectional area (n=6), and myocardial fibrosis (n=6). Western blotting and immunohistochemical staining showed that the inhibitory effects of aerobic exercise on the IL-6/JAK/STAT pathway and cardiac inflammation were partially abolished after miR-574-3p knockdown. Furthermore, we also found that miR-574-3p exerts cardioprotective effects in cardiomyocytes by targeting IL-6 (n=3). CONCLUSIONS: Aerobic exercise protects cardiac hypertrophy and inflammation induced by pressure overload by upregulating miR-574-3p and inhibiting the IL-6/JAK/STAT pathway.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Miocardite , Camundongos , Animais , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Insuficiência Cardíaca/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Miócitos Cardíacos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiomegalia/patologia , Miocardite/genética , Miocardite/prevenção & controle , Inflamação/patologia , Modelos Animais de Doenças , Fibrose
4.
Acta Pharmacol Sin ; 45(2): 312-326, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37833535

RESUMO

Apoptosis plays a critical role in the development of heart failure, and sphingosylphosphorylcholine (SPC) is a bioactive sphingolipid naturally occurring in blood plasma. Some studies have shown that SPC inhibits hypoxia-induced apoptosis in myofibroblasts, the crucial non-muscle cells in the heart. Calmodulin (CaM) is a known SPC receptor. In this study we investigated the role of CaM in cardiomyocyte apoptosis in heart failure and the associated signaling pathways. Pressure overload was induced in mice by trans-aortic constriction (TAC) surgery. TAC mice were administered SPC (10 µM·kg-1·d-1) for 4 weeks post-surgery. We showed that SPC administration significantly improved survival rate and cardiac hypertrophy, and inhibited cardiac fibrosis in TAC mice. In neonatal mouse cardiomyocytes, treatment with SPC (10 µM) significantly inhibited Ang II-induced cardiomyocyte hypertrophy, fibroblast-to-myofibroblast transition and cell apoptosis accompanied by reduced Bax and phosphorylation levels of CaM, JNK and p38, as well as upregulated Bcl-2, a cardiomyocyte-protective protein. Thapsigargin (TG) could enhance CaM functions by increasing Ca2+ levels in cytoplasm. TG (3 µM) annulled the protective effect of SPC against Ang II-induced cardiomyocyte apoptosis. Furthermore, we demonstrated that SPC-mediated inhibition of cardiomyocyte apoptosis involved the regulation of p38 and JNK phosphorylation, which was downstream of CaM. These results offer new evidence for SPC regulation of cardiomyocyte apoptosis, potentially providing a new therapeutic target for cardiac remodeling following stress overload.


Assuntos
Calmodulina , Insuficiência Cardíaca , Fosforilcolina/análogos & derivados , Esfingosina/análogos & derivados , Camundongos , Animais , Calmodulina/metabolismo , Calmodulina/farmacologia , Calmodulina/uso terapêutico , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos , Transdução de Sinais , Remodelação Ventricular , Camundongos Endogâmicos C57BL
5.
Angew Chem Int Ed Engl ; 62(44): e202311549, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37715322

RESUMO

Both hydrogen (H2 ) and copper ions (Cu+ ) can be used as anti-cancer treatments. However, the continuous generation of H2 molecules and Cu+ in specific sites of tumors is challenging. Here we anchored Cu2+ on carbon photocatalyst (Cu@CDCN) to allow the continuous generation of H2 and hydrogen peroxide (H2 O2 ) in tumors using the two-electron process of visible water splitting. The photocatalytic process also generated redox-active Cu-carbon centers. Meanwhile, the Cu2+ residues reacted with H2 O2 (the obstacle to the photocatalytic process) to accelerate the two-electron process of water splitting and cuprous ion (Cu+ ) generation, in which the Cu2+ residue promoted a pro-oxidant effect with glutathione through metal-reducing actions. Both H2 and Cu+ induced mitochondrial dysfunction and intracellular redox homeostasis destruction, which enabled hydrogen therapy and cuproptosis to inhibit cancer cell growth and suppress tumor growth. Our research is the first attempt to integrate hydrogen therapy and cuproptosis using metal-enhanced visible solar water splitting in nanomedicine, which may provide a safe and effective cancer treatment.


Assuntos
Carbono , Cobre , Humanos , Transformação Celular Neoplásica , Hidrogênio , Água , Apoptose
6.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166813, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37488049

RESUMO

Ubiquitin-specific protease 22 (USP22) is a member of the ubiquitin specific protease family (ubiquitin-specific protease, USPs), the largest subfamily of deubiquitinating enzymes, and plays an important role in the treatment of tumors. USP22 is also expressed in the heart. However, the role of USP22 in heart disease remains unclear. In this study, we found that USP22 was elevated in hypertrophic mouse hearts and in angiotensin II (Ang II)-induced cardiomyocytes. The inhibition of USP22 expression with adenovirus significantly rescued hypertrophic phenotype and cardiac dysfunction induced by pressure overloaded. Consistent with in vivo study, silencing by USP22 shRNA expression in vitro had similar results. Molecular analysis revealed that transforming growth factor-ß-activating protein 1 (TAK1)-(JNK1/2)/P38 signaling pathway and HIF-1α was activated in the Ang II-induced hypertrophic cardiomyocytes, whereas HIF-1α expression was decreased after the inhibition of USP22. Inhibition of HIF-1α expression reduces TAK1 expression. Co-immunoprecipitation and ubiquitination studies revealed the regulatory mechanism between USP22 and HIF1α.Under hypertrophic stress conditions, USP22 enhances the stability of HIF-1α through its deubiquitination activity, which further activates the TAK1-(JNK1/2)/P38 signaling pathway to lead to cardiac hypertrophy. Inhibition of HIF-1α expression further potentiates the in vivo pathological effects caused by USP22 deficiency. In summary, this study suggests that USP22, through HIF-1α-TAK1-(JNK1/2)/P38 signaling pathway, may be potential targets for inhibiting pathological cardiac hypertrophy induced by pressure overload.


Assuntos
Cardiomegalia , MAP Quinase Quinase Quinases , Animais , Camundongos , Cardiomegalia/metabolismo , MAP Quinase Quinase Quinases/genética , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/farmacologia
7.
Stem Cell Rev Rep ; 19(6): 1922-1936, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37199874

RESUMO

Psoriasis, an inflammatory autoimmune skin disease, is characterized by scaly white or erythematous plaques, which severely influence patients' quality of life and social activities. Mesenchymal stem cells derived from the human umbilical cord (UCMSCs) represent a promising therapeutic approach for psoriasis because of its unique superiority in ethical agreeableness, abundant source, high proliferation capacity, and immunosuppression. Although cryopreservation provided multiple benefits to the cell therapy, it also greatly compromised clinical benefits of MSCs due to impaired cell functions. The current study aims to evaluate the therapeutic efficacy of cryopreserved UCMSCs in a mouse model of psoriasis as well as in patients with psoriasis. Our results showed that cryopreserved and fresh UCMSCs have comparable effects on the suppression of psoriasis-like symptoms such as thickening, erythema, and scaling, and serum IL-17 A secretion in mice model of psoriasis. Moreover, psoriatic patients injected with cryopreserved UCMSCs had a significant improvement in the Psoriasis Area and Severity Index (PASI), Physician Global Assessment (PGA), and Patient Global Assessments (PtGAs) scores compared to baseline values. Mechanically, cryopreserved UCMSCs markedly inhibit the proliferation of PHA-activated PBMCs, type 1 T helper (Th1) and type 17 T helper (Th17) cell differentiation and secretion of inflammatory cytokines including IFN-γ, TNF-a and IL-17 A in PBMCs stimulated by anti-CD3/CD28 beads. Taken together, these data indicated that cryopreserved UCMSCs exhibited great beneficial effect on psoriasis. Thus, cryopreserved UCMSCs can be systemically administered as ''off-the-shelf'' cell product for psoriasis therapy. Trial Registration ChiCTR1800019509. Registered on November 15, 2018-Retrospectively registered, http://www.chictr.org.cn/ .


Assuntos
Células-Tronco Mesenquimais , Psoríase , Camundongos , Animais , Humanos , Interleucina-17/metabolismo , Qualidade de Vida , Psoríase/terapia , Psoríase/metabolismo , Cordão Umbilical
8.
Acta Pharmacol Sin ; 44(7): 1366-1379, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36721009

RESUMO

Previous studies show that notoginsenoside R1 (NG-R1), a novel saponin isolated from Panax notoginseng, protects kidney, intestine, lung, brain and heart from ischemia-reperfusion injury. In this study we investigated the cardioprotective mechanisms of NG-R1 in myocardial ischemia/reperfusion (MI/R) injury in vivo and in vitro. MI/R injury was induced in mice by occluding the left anterior descending coronary artery for 30 min followed by 4 h reperfusion. The mice were treated with NG-R1 (25 mg/kg, i.p.) every 2 h for 3 times starting 30 min prior to ischemic surgery. We showed that NG-R1 administration significantly decreased the myocardial infarction area, alleviated myocardial cell damage and improved cardiac function in MI/R mice. In murine neonatal cardiomyocytes (CMs) subjected to hypoxia/reoxygenation (H/R) in vitro, pretreatment with NG-R1 (25 µM) significantly inhibited apoptosis. We revealed that NG-R1 suppressed the phosphorylation of transforming growth factor ß-activated protein kinase 1 (TAK1), JNK and p38 in vivo and in vitro. Pretreatment with JNK agonist anisomycin or p38 agonist P79350 partially abolished the protective effects of NG-R1 in vivo and in vitro. Knockdown of TAK1 greatly ameliorated H/R-induced apoptosis of CMs, and NG-R1 pretreatment did not provide further protection in TAK1-silenced CMs under H/R injury. Overexpression of TAK1 abolished the anti-apoptotic effect of NG-R1 and diminished the inhibition of NG-R1 on JNK/p38 signaling in MI/R mice as well as in H/R-treated CMs. Collectively, NG-R1 alleviates MI/R injury by suppressing the activity of TAK1, subsequently inhibiting JNK/p38 signaling and attenuating cardiomyocyte apoptosis.


Assuntos
Ginsenosídeos , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Ginsenosídeos/metabolismo , Miocárdio , Miócitos Cardíacos , Apoptose
9.
Can J Cardiol ; 39(1): 73-86, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240973

RESUMO

BACKGROUND: Ischemic cardiomyopathy (ICM) is associated with electrical and structural remodelling, leading to arrhythmias. Caveolin-1 (Cav1) is a membrane protein involved in the pathogenesis of ischemic injury. Cav1 deficiency has been associated with arrhythmogenicity. The current study aimed to determine how Cav1 overexpression inhibits arrhythmias and cardiac remodelling in ICM. METHODS: ICM was modelled using left anterior descending (LAD) artery ligation for 4 weeks. Cardiac-specific Cav1 overexpression in ICM on arrhythmias, excitation-contraction coupling, and cardiac remodelling were investigated using the intramyocardial injection of an adeno-associated virus serotype 9 (AAV-9) system, carrying a specific sequence expressing Cav1 (AAVCav1) under the cardiac troponin T (cTnT) promoter. RESULTS: Cav1 overexpression decreased susceptibility to arrhythmias by upregulating gap junction connexin 43 (CX43) and reducing spontaneous irregular proarrhythmogenic Ca2+ waves in ventricular cardiomyocytes. It also alleviated ischemic injury-induced contractility weakness by improving Ca2+ cycling through normalizing Ca2+-handling protein levels and improving Ca2+ homeostasis. Masson stain and immunoblotting revealed that the deposition of excessive fibrosis was attenuated by Cav1 overexpression, inhibiting the transforming growth factor-ß (TGF-ß)/Smad2 signalling pathway. Coimmunoprecipitation assays demonstrated that the interaction between Cav1 and cSrc modulated CX43 expression and Ca2+-handling protein levels. CONCLUSIONS: Cardiac-specific overexpression of Cav1 attenuated ventricular arrhythmia, improved Ca2+ cycling, and attenuated cardiac remodelling. These effects were attributed to modulation of CX43, normalized Ca2+-handling protein levels, improved Ca2+ homeostasis, and attenuated cardiac fibrosis.


Assuntos
Cardiomiopatias , Caveolina 1 , Isquemia Miocárdica , Animais , Ratos , Arritmias Cardíacas/etiologia , Cardiomiopatias/patologia , Caveolina 1/genética , Caveolina 1/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Isquemia Miocárdica/complicações , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Remodelação Ventricular
10.
J Colloid Interface Sci ; 621: 331-340, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35462175

RESUMO

HYPOTHESIS: Although it is well-accepted that iron oxide nanoparticles are considered as artificial enzymes when their surface is hydrophilic, the enzyme-like properties of iron oxide nanoparticles with hydrophobic surface coating is unexplored. This work demonstrates that hydrophobic iron oxide nanocrystals coated with a layer of oleic acid could serve as artificial enzymes when their surface is covered by a layer of ionic surfactant. Furthermore, the co-assembly of iron oxide nanocrystals and porous organic cages could modulate their enzyme-like activities. EXPERIMENTS: Co-assembly of iron oxide (Fe3O4) nanocrystals with different size and porous organic cages (POCs) was performed by an emulsion-confined strategy to achieve hybridized Fe3O4/POCs co-assemblies. The peroxidase-mimic activity of these co-assemblies were assessed in the presence of 3, 3', 5, 5'-Tetramethylbenzidine (TMB) and hydrogen peroxide. Finally, these co-assemblies were applied as sensors to detect glucose and hydrogen peroxide. FINDINGS: Co-assembly of Fe3O4 nanocrystals and POCs resulted in the self-assembly of Fe3O4 nanoparticles into two-dimensional nanoparticle superlattices on the eight (111) facets of the octahedral POCs colloidal crystals. The unique oil-in-water (O/W) emulsion confined assembly method switches the Fe3O4 nanoparticles and POC crystals from hydrophobic to hydrophilic because of the strong hydrophobic interactions. Importantly, these co-assemblies dispersed in water showed strong peroxidase-mimic activity in water despite that their surface is covered by a bilayer of aliphatic chains. Furthermore, the intrinsic enzymatic activity of the co-assemblies is highly dependent on the size of the nanocrystals, and a higher catalytic activity is achieved from a larger sized Fe3O4 nanocrystal.


Assuntos
Peróxido de Hidrogênio , Nanopartículas , Emulsões , Compostos Férricos , Peróxido de Hidrogênio/química , Nanopartículas/química , Peroxidase , Peroxidases , Porosidade , Água
11.
J Colloid Interface Sci ; 616: 316-325, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35219197

RESUMO

The development of highly active and earth-rich electrocatalysts remains a formidable challenge for the commercialization of fuel cells. Herein, a composite carrier composed of cobaltous telluride (CoTe) and carbon (C) has been designed for the first time to enhance the electrocatalytic performance of palladium (Pd) nanoparticles (NPs) for the electro-oxidation of ethylene glycol (EG). Remarkably, the mass activity for the as-prepared Pd/CoTe-C catalyst during the ethylene glycol oxidation reaction (EGOR) is found to reach up to 3917.3 mA mg-1, which is 2.2 times higher than that of Pd/Co-C (1785.0 mA mg-1) and 4.1 times greater than that of commercial Pd/C catalyst (962.4 mA mg-1), exceeding that obtained for most Pd-based electrocatalysts reported thus far. In particular, the Pd/CoTe-C catalyst shows better electrochemical stability toward the EGOR than the Pd/Co-C and commercial Pd/C catalysts. Thus, the Pd/CoTe-C electrocatalyst is expected to exhibit broad application prospects in the field of fuel cells.

13.
J Colloid Interface Sci ; 582(Pt B): 561-568, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32911405

RESUMO

Anode catalyst is one of the core components of fuel cell, but its poor catalytic activity, short lifespan, and high price are tricky problems to the commercialization of fuel cell. Herein, a novel rod-like MnO2 decorated reduced graphene oxide (RGO) supported Pd hybrid (Pd/RGO-MnO2) has been designed, which manifests more negative onset oxidation potential, higher peak current density, and better long-term stability relative to Pd/RGO and pure Pd catalysts when serving for ethylene glycol electrooxidation. This enhancement may be due to the addition of MnO2, which can effectively promote the adsorption of hydroxyl at a lower potential and produce a strong electronic interaction with Pd, as confirmed by X-ray photoelectron spectroscopy (XPS) technique. In view of its excellent performance and low cost, Pd/RGO-MnO2 is considered to be a potential and effective anode catalyst for DEGFCs.

14.
Front Pharmacol ; 11: 585984, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343353

RESUMO

Myocardial infarction is one of the most serious fatal diseases in the world, which is due to acute occlusion of coronary arteries. Grape seed proanthocyanidin extract (GSPE) is an active compound extracted from grape seeds that has anti-oxidative, anti-inflammatory and anti-tumor pharmacological effects. Natural products are cheap, easy to obtain, widely used and effective. It has been used to treat numerous diseases, such as cancer, brain injury and diabetes complications. However, there are limited studies on its role and associated mechanisms in myocardial infarction in mice. This study showed that GSPE treatment in mice significantly reduced cardiac dysfunction and improved the pathological changes due to MI injury. In vitro, GSPE inhibited the apoptosis of H9C2 cells after hypoxia culture, resulting in the expression of Bax decreased and the expression of Bcl-2 increased. The high expression of p-PI3K and p-AKT was detected in MI model in vivo and in vitro. The use of the specific PI3K/AKT pathway inhibitor LY294002 regressed the cardio-protection of GSPE. Our results showed that GSPE could improve the cardiac dysfunction and remodeling induced by MI and inhibit cardiomyocytes apoptosis in hypoxic conditions through the PI3K/AKT signaling pathway.

15.
J Colloid Interface Sci ; 536: 71-79, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30359886

RESUMO

Designing cost-efficient and durable electrocatalysts toward oxygen evolution reaction (OER) has been of vital significance for the commercial development of various renewable energy systems. Herein, we report the construction of a new class of 3D hollow nanoflower catalysts that assembled by ultrathin nickel-molybdenum phosphide nanosheets. Owing to the increased electronic and ion transport channels, the heteroatom doping, and synergistic effects from the interconnected compositions, the newly-generated 3D MoNiP hollow nanoflowers display superior OER activity than that of Ir/C. And the optimized Mo1Ni1P hollow nanoflowers (Mo1Ni1P HNFs) can afford a current density of 10 mA cm-2 at the overpotential of 275 mV in 1.0 M KOH solution. More importantly, the resultant Mo1Ni1P HNFs also display excellent stability with negligible activity and morphology decay. This work provides insights for the utilization of earth-abundant and highly efficient electrocatalysts via rationally designing the morphology of electrocatalysts.

16.
Oncol Lett ; 16(1): 905-909, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29963162

RESUMO

Ovarian cancer is one of the most commonly occurring types of cancer and one of the most common causes of cancer-associated mortality in women. Diagnosis of ovarian cancer at an early stage is difficult due to the lack of specific symptoms. In the present study, it is demonstrated that active vitamin D treatment prohibited the proliferation and invasion of ovarian cancer cells, and the expression level of a germ cell specific marker DEAD (Asp-Glu-Ala-Asp)-box helicase 4 (DDX4), which is overexpressed in ovarian cancer, was downregulated by active vitamin D treatment. Knockdown of DDX4 by siRNA could also suppress the invasive ability of ovarian cancer cells. Therefore, DDX4 may be considered as a diagnostic marker of ovarian cancer, and vitamin D may be a candidate drug for ovarian cancer therapy.

17.
Cancer Commun (Lond) ; 38(1): 16, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29764516

RESUMO

BACKGROUND: Extracranial metastasis (ENM) of meningiomas is extremely rare, and typically occurs several years after a primary tumor is diagnosed. However, the genetic changes underlying ENM events have not yet been investigated. CASE PRESENTATION: A 58-year-old male patient was sent to the emergency room of our hospital because of a sudden fall. Magnetic resonance imaging detected a mass at the right frontal sagittal sinus. He underwent tumor resection and recovered well, but post-operative computed tomography revealed three lumps on the right side of his chest. Thoracic surgery was performed to remove two of the lumps. Pathological findings revealed that the brain and lung tumors were grade I meningiomas. The patient received no additional radiation or chemotherapy post-surgery, and there was no sign of tumor recurrence in the brain or progression of the remaining lump in the chest 1 year after surgery. We performed whole exome sequencing of the patient's blood, primary brain tumor, and lung metastatic tumor tissues to identify somatic genetic alterations that had occurred during ENM. This revealed that a frameshift deletion of the neurofibromin 2 gene likely drove formation of the meningioma. Surprisingly, we found that the brain tumor was relatively homogeneous and contained only one dominant clone; both the pulmonary metastasis and the original brain tumor were derived from the same clone, and no obvious additional driver mutations were detected in the metastatic tumor. CONCLUSION: Although ENM of meningiomas is very rare, brain tumor cells appear to be more adaptable to tissue microenvironments outside of the central nervous system than was commonly thought.


Assuntos
Neoplasias Pulmonares/genética , Neoplasias Meníngeas/genética , Meningioma/genética , Mutação , Neurofibromina 2/genética , Humanos , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/cirurgia , Masculino , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/cirurgia , Meningioma/patologia , Meningioma/cirurgia , Sequenciamento do Exoma
18.
J Huazhong Univ Sci Technolog Med Sci ; 37(3): 412-418, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28585128

RESUMO

Nasal polyp (NP) is a common chronic inflammatory disease of the nasal cavity and sinuses. Although some authors have suggested that NP is related to inflammatory factors such as interleukin (IL)-1ß, IL-5, IL-8, granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor (TNF)-α, and IL-17, the mechanisms underlying the pathogenesis and progression of NP remain obscure. This study investigated the expression and distribution of IL-17 and syndecan-1 in NP, and explored the roles of these two molecules in the pathogenesis of eosinophilic chronic rhinosinusitis with nasal polyps (Eos CRSwNP) and non-Eos CRSwNP. Real-time PCR and immunohistochemistry were used to detect the expression of IL-17 and syndecan-1 in samples [NP, unciform process (UP) from patients with CRS, and middle turbinate (MT) from healthy controls undergoing pituitary tumor surgery]. The results showed that the expression levels of IL-17 and syndecan-1 were upregulated in both NP and UP tissues, but both factors were higher in NP tissues than in UP tissues. There was no significant difference in IL-17 levels between the Eos CRSwNP and non-Eos CRSwNP samples, and syndecan-1 levels were increased in the non-Eos CRSwNP tissues as compared with those in Eos CRSwNP tissues. In all of the groups, there was a close correlation between the expression of IL-17 and syndecan-1 in nasal mucosa epithelial cells, glandular epithelial cells, and inflammatory cells, suggesting that IL-17 and syndecan-1 may play a role, and interact with each other, in the pathogenesis of non-Eos CRSwNP.


Assuntos
Eosinofilia/genética , Interleucina-17/genética , Pólipos Nasais/genética , Rinite/genética , Sinusite/genética , Sindecana-1/genética , Estudos de Casos e Controles , Doença Crônica , Eosinofilia/imunologia , Eosinofilia/patologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Interleucina-17/imunologia , Cavidade Nasal/imunologia , Cavidade Nasal/patologia , Mucosa Nasal/imunologia , Mucosa Nasal/patologia , Pólipos Nasais/complicações , Pólipos Nasais/imunologia , Pólipos Nasais/patologia , Rinite/complicações , Rinite/imunologia , Rinite/patologia , Sinusite/complicações , Sinusite/imunologia , Sinusite/patologia , Sindecana-1/imunologia
19.
Biochem Biophys Res Commun ; 484(2): 248-254, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28111342

RESUMO

HER2 is an orphan receptor tyrosine kinase of the EGFR families and is considered to be a key tumor driver gene [1]. Breast cancer and gastric cancer with HER2 amplification can be effectively treated by its neutralizing antibody, Herceptin. In clinic, Immunohistochemistry (IHC) was used as the primary screening method to diagnose HER2 amplification [2]. However, recent evidence suggested that the frequently used rabbit HER2 antibody 4B5 cross reacted with another family member HER4 [3]. IHC staining with 4B5 also indicated that there was strong non-specific cytoplasmic and nuclear signals in normal gastric mucosal cells and some gastric cancer samples. Using a protein lysate array which covers 85% of the human proteome, we have confirmed that the 4B5 bound to HER4 and a nuclear protein ZSCAN18 besides HER2. The non-specific binding accounts for the unexpected cytoplasmic and nuclear staining of 4B5 of normal gastric epithelium. Finally, we have developed a novel mouse HER2 monoclonal antibody UMAB36 with similar sensitivity to 4B5 but only reacted to HER2 across the 17,000 proteins on the protein chip. In 129 breast cancer and 158 gastric cancer samples, UMAB36 showed 100% sensitivity and specificity comparing to the HER2 FISH reference results with no unspecific staining in the gastric mucosa layer. Therefore, UMAB36 could provide as an alternative highly specific IHC reagent for testing HER2 amplification in gastric cancer populations.


Assuntos
Anticorpos Monoclonais/imunologia , Receptor ErbB-2/imunologia , Especificidade de Anticorpos , Linhagem Celular Tumoral , Reações Cruzadas , Humanos , Imuno-Histoquímica , Análise Serial de Proteínas , Neoplasias Gástricas/imunologia
20.
Cell Res ; 23(9): 1133-46, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23896988

RESUMO

Intestinal stem cells (ISCs) in the Drosophila adult midgut are essential for maintaining tissue homeostasis, and their proliferation and differentiation speed up in order to meet the demand for replenishing the lost cells in response to injury. Several signaling pathways including JAK-STAT, EGFR and Hippo (Hpo) pathways have been implicated in damage-induced ISC proliferation, but the mechanisms that integrate these pathways have remained elusive. Here, we demonstrate that the Drosophila homolog of the oncoprotein Myc (dMyc) functions downstream of these signaling pathways to mediate their effects on ISC proliferation. dMyc expression in precursor cells is stimulated in response to tissue damage, and dMyc is essential for accelerated ISC proliferation and midgut regeneration. We show that tissue damage caused by dextran sulfate sodium feeding stimulates dMyc expression via the Hpo pathway, whereas bleomycin feeding activates dMyc through the JAK-STAT and EGFR pathways. We provide evidence that dMyc expression is transcriptionally upregulated by multiple signaling pathways, which is required for optimal ISC proliferation in response to tissue damage. We have also obtained evidence that tissue damage can upregulate dMyc expression post-transcriptionally. Finally, we show that a basal level of dMyc expression is required for ISC maintenance, proliferation and lineage differentiation during normal tissue homeostasis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Mucosa Intestinal/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Bleomicina/farmacologia , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Sulfato de Dextrana/farmacologia , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/efeitos dos fármacos , Proteínas de Drosophila/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Intestinos/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Janus Quinases/genética , Janus Quinases/metabolismo , Proteínas Nucleares/efeitos dos fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Transativadores/efeitos dos fármacos , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA