Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(22): 8586-8595, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37213133

RESUMO

In vivo electrochemical analysis is of great significance in understanding the dynamics of various physiological and pathological activities. However, the conventional microelectrodes for electrochemical analysis are rigid and permanent, which comes with increased risks for long-term implantation and secondary surgery. Here, we develop one biodegradable microelectrode for monitoring the dynamics of extracellular Ca2+ in rat brain. The biodegradable microelectrode is prepared by sputtering gold nanoparticles (AuNPs) on a wet-spun flexible poly(l-lactic acid) (PLLA) fiber for conduction and transduction and coating a Ca2+ ion-selective membrane (ISM) with a PLLA matrix on the PLLA/AuNPs fiber, forming PLLA/AuNPs/Ca2+ISME (ISME = ion-selective microelectrode). The prepared microelectrode shows excellent analytical properties including a near-Nernst linear response toward Ca2+ over the concentration range from 10 µM to 50 mM, good selectivity, and long-term stability for weeks as well as biocompatibility and biodegradability. The PLLA/AuNPs/Ca2+ISME can monitor the dynamics of extracellular Ca2+ following spreading depression induced by high potassium even if in the fourth day. This study provides a new design strategy for the biodegradable ISME and promotes the development of biodegradable microelectrodes for long-term monitoring of chemical signals in brain.


Assuntos
Ouro , Nanopartículas Metálicas , Ratos , Animais , Microeletrodos , Ouro/química , Encéfalo
2.
ACS Biomater Sci Eng ; 9(2): 1066-1076, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36617740

RESUMO

The elevated antioxidant defense system in cancer cells can lead to resistance to treatments involving ROS. Breaking the redox balance of the cell system through a "open up the source and regulate the flow" strategy can inhibit the growth of cancer cells and thus design a cancer treatment strategy. Here, cobalt single atom-supported N-doped carbon nanozymes (Co SA-N/C) were synthesized via a simple sacrificial template method, which can mimic the properties of ascorbate oxidase and glutathione oxidase effectively. The synthesized Co SA-N/C can induce the generation of active oxygen by accelerating the oxidation of ascorbic acid (AA) and destroy the endogenous active oxygen scavenging system by consuming the main antioxidant, glutathione (GSH). In-depth in vitro and in vivo investigations indicate that compared with solo therapy, Co SA-N/C together with AA can significantly enhance the anti-tumor efficiency by simultaneously elevating oxidative stress and consuming the overexpressed glutathione (GSH) through the redox reaction catalyzed by Co SA-N/C. This work provides a promising route for developing nanozyme-guided and ascorbate-based antitumor agents.


Assuntos
Antioxidantes , Ácido Ascórbico , Ácido Ascórbico/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio , Cobalto/farmacologia , Oxirredução , Glutationa/farmacologia , Glutationa/metabolismo
3.
Biosens Bioelectron ; 220: 114893, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423391

RESUMO

Despite the extensive investigation of the nanozymes exhibit their favorable performance compared to natural enzymes, nevertheless, the highly specific nanozyme still needs to be developed so that it can meet the requirements of exploring the mechanism as well as administration of related diseases and selective monitoring in biological system. In this study, self-assembled glutathione-Cu/Cu2O nanoparticles (GSH-Cu/Cu2O NPs) that exhibits specific ascorbic acid (AA) oxidase-like catalytic activity were constructed for AA-activated and H2O2-reinforced cancer cell proliferation inhibition and selective neurochemical monitoring. Cu/Cu2O NPs demonstrates effective AA oxidase-like activity and no common characteristics of other redox mimic enzymes often present in nanozyme. In particular, we found that the AA oxidase-like activity of GSH-Cu/Cu2O nanozyme was significantly improved by about 40% by improving the activation ability toward oxygen. The synthesized nanozyme can induce the generation of active oxygen by accelerating the oxidation of AA, which effectively suppresses the proliferation of cancer cells. We constructed an online electrochemical system (OECS) though loading nanozyme with enhanced ascorbate oxidase activity into a microreactor and setting it in the upstream of the detector. This GSH-Cu/Cu2O NPs-integrated microreactor can completely eliminate AA interference of the physical level toward 3,4-dihydroxy phenylacetic acid (DOPAC) electrochemical measurement, and the nanozyme-based OECS is able to continuously capture DOPAC alteration in rat brain acidosis model. Our findings may inspire rational design of nanozymes with high specificity as well as nanozyme-based selectivity solution for in vivo detection and show promising opportunities for their involvement in neurochemistry investigation.


Assuntos
Técnicas Biossensoriais , Neoplasias , Animais , Ratos , Ascorbato Oxidase , Ácido 3,4-Di-Hidroxifenilacético , Peróxido de Hidrogênio , Proliferação de Células , Ácido Ascórbico , Glutationa
4.
ACS Appl Mater Interfaces ; 13(44): 52987-52997, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34723454

RESUMO

Nanozymes have been designed to address the limitations of high cost and poor stability involving natural enzymes in analytical applications. However, the catalytic efficiency of the nanozyme still needs to be improved so that it can meet the selectivity and stability requirements of accurate biomolecule analysis. Here, we presented structure defects of metal-organic frameworks (MOFs) as a tuning strategy to regulate the catalytic efficiency of artificial nanozymes and investigated the roles of defects on the catalytic activity of oxidase-like MOFs. Structural defects were introduced into a novel Co-containing zeolitic imidazolate framework with gradually loosened morphology (ZIF-L-Co) by doping cysteine (Cys). It was found that with the increase in defect degree, the properties of materials such as ascorbate oxidase-like, glutathione oxidase-like, and laccase-like were obviously enhanced by over 5, 2, and 3 times, respectively. In-depth structural investigations indicate that the doping of sulfur inducing structural defects which may destroy the equilibrium state between cobalt and nitrogen in 2-methylimidazole and distort the crystal lattice, thereby enhancing the adsorption of oxygen and thus promoting the oxidase-like activity. The ZIF-L-Co-10 mg with enhanced ascorbate oxidase- and laccase-like activity was loaded into a microreactor and integrated into an online electrochemical system (OECS) in the upstream of the detector. This nanozyme-based microreactor can completely remove ascorbic acid, dopamine, and 3,4-dihydroxyphenylacetic acid which are the main interference toward uric acid (UA) electrochemical measurement, and the ZIF-L-Co-10 mg Cys-based OECS system is capable of continuously capturing UA change in rat brain following ischemia-reperfusion injury. Structure defect tuning of ZIF-L-Co not only provides a new regulatory strategy for artificial nanozyme activity but also provides a critical chemical platform for the investigation of UA-related brain function and brain diseases.

5.
Chem Commun (Camb) ; 56(47): 6436-6439, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393954

RESUMO

A novel electrochemical online system for indirect, highly sensitive and selective online monitoring of ATP in the cerebral microdialysate is presented based on the particular reaction of ATP with zeolitic imidazole framework-90 (ZIF-90) encapsulated laccase microcrystals (laccase@ZIF-90) and the natural catalytic activity of laccase.


Assuntos
Trifosfato de Adenosina/análise , Técnicas Biossensoriais , Encéfalo/metabolismo , Técnicas Eletroquímicas , Lacase/química , Zeolitas/química , Trifosfato de Adenosina/metabolismo , Animais , Imidazóis/química , Imidazóis/metabolismo , Lacase/metabolismo , Estrutura Molecular , Tamanho da Partícula , Ratos , Propriedades de Superfície , Zeolitas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA