Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 330: 118255, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38670402

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ziziphi Spinosae Semen and Polygalae Radix (ZSS-PR) constitute a traditional Chinese herbal combination with notable applications in clinical and experimental settings due to their evident sedative and calming effects. Aligned with traditional Chinese medicine principles, Ziziphi Spinosae Semen supports cardiovascular health, nourishes the liver, and induces mental tranquillity. Simultaneously, Polygalae Radix elicits calming effects, fosters clear thinking, and reinstates proper coordination between the heart and kidneys. ZSS-PR is commonly employed as a therapeutic intervention for various insomnia types, demonstrating distinct clinical efficacy. Our previous study findings provide evidence that ZSS-PR administration significantly reduces sleep onset latency, increases overall sleep duration, and improves abnormal neurotransmitter levels in a murine insomnia model. AIM OF STUDY: This investigation aimed to scrutinize the intrinsic regulatory mechanism of ZSS-PR in managing insomnia using gut microbiota and serum metabolomics techniques. MATERIALS AND METHODS: Mice were given DL-4-Chlorophenylalanine to induce insomnia and then treated with ZSS-PR. The open-field test assessed the animals' spontaneous activity. Concentrations of neurotransmitters, endocrine hormones, and cytokines in the duodenum were measured using enzyme linked immunosorbent assay, and brain histopathology was evaluated with H&E staining. The impact of ZSS-PR on the metabolic profile was examined by liquid chromatography couped to high resolution mass spectrometry, and 16S rDNA sequencing was used to study the influence of ZSS-PR on the gut microbiota. Additionally, the content of short-chain fatty acids (SCFAs) was analyzed by GC-MS. Finally, correlation analysis investigated relationships between biochemical markers, metabolites, SCFAs, and gut microbiota. RESULTS: ZSS-PR treatment significantly increased movement time and distance in mice with insomnia and improved pathological impairments in the cerebral cortex and hippocampus. It also restored abnormal levels of biochemical markers in the gut of insomnia-afflicted mice, including 5-hydroxytryptamine, dopamine, gastrin, melatonin, tumour necrosis factor-α, and interleukin-1ß. Metabolomics findings showed that ZSS-PR had a significant restorative effect on 15 endogenous metabolites in mice with insomnia. Furthermore, ZSS-PR primarily influenced five metabolic pathways, such as phenylalanine, tyrosine, and tryptophan biosynthesis, glutamine, and glutamate metabolism. Additionally, gut microbiota analysis revealed notable alterations in both diversity and microbial composition after ZSS-PR treatment. These changes were primarily attributed to the relative abundances of microbiota, including Firmicutes, Bacteroidota, Fusobacteriota, Muribaculaceae_unclassified, and Ligilactobacillus. The results of SCFAs analysis demonstrated that ZSS-PR effectively restored abnormal levels of acetic acid, propionic acid, isobutyric acid, butyric acid, isovaleric acid, and valeric acid in insomniac mice. Subsequent correlation analysis revealed that microbiota show obvious correlations with both biochemical markers and metabolites. CONCLUSIONS: The results provide compelling evidence that ZSS-PR effectively mitigates abnormal activity, reduces cerebral pathological changes, and restores abnormal levels of neurotransmitters, endocrine hormones, and cytokines in mice with insomnia. The underlying mechanism is intricately linked to the modulation of gut microbiota and endogenous metabolic pathways.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Metabolômica , Polygala , Distúrbios do Início e da Manutenção do Sono , Ziziphus , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Ziziphus/química , Camundongos , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Polygala/química , Modelos Animais de Doenças , Sono/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Animais não Endogâmicos
2.
J Ethnopharmacol ; 296: 115410, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35640741

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Yuanzhi Powder is a commonly used traditional Chinese medical formulae for its potency in enhancing memory and learning. In clinical practice, Yuanzhi Powder is a classic formula in TCM to treat amnesia of the type "deficiency of Qi, turbid phlegm harasses the head and eyes, and stagnation of phlegm converting into the fire". Our previous study showed that Yuanzhi Power, used together with Codonopsis Radix (Dangshen Yuanzhi Power, DYP), could improve learning and memory ability in animals with memory disorder (MD) and its efficacy is superior or equivalent to that of the Yuanzhi Power. AIM OF STUDY: This study aimed to explore the regulatory mechanism of DYP through the "bacteria-gut-brain axis". MATERIALS AND METHODS: The SD rats were divided randomly into control, model, positive, DYP-L, and DYP-H groups. Except for the control group, the rats were intraperitoneally injected with D-Gal (400 mg/kg) and gavaged with aluminum chloride (200 mg/kg) every day for 50 days. The rats in the DYP group were gavaged with DYP (6.67 and 13.34 g/kg, respectively) from the 15th day, once a day. The rats in the positive group were similarly administrated with piracetam (0.5 g/kg). The rats' bodyweight was recorded from the 16th day. The learning and memory ability of animals was tested by Morris water maze. The levels of MCP-1, NF-L, NSE, and TNF-α in serum were determined by Elisa kit, while the histopathology of duodenum and colon tissues was examined by H & E staining. The diversity of intestinal flora was sequenced and analyzed. In order to reveal the role of intestinal flora in DYP treatment of MD, the intestinal flora composition and the correlation analysis of intestinal flora and the above biochemical indexes were investigated. The intestinal flora function and biological metabolic pathways were predicted and analyzed by the KEGG database. RESULTS: The MD animals' learning and spatial memory ability decreased significantly, compared with the normal group, accompanied by weight increase and intestinal flora disorder. DYP can improve the learning and memory ability of MD animals, and its efficacy may exert through the following ways: (i) callback the abnormal biochemical indexes of MCP-1, NF-L, NSE, and TNF-α; (ii) decreasing the relative ratio of Firmicutes/Bacteroidetes and repairing the pathology of MD animal intestinal mucosa; and (iii) the regulation of DYP on biochemical blood indexes of MD animals was significantly correlated with the regulation of intestinal flora; (iv) DYP rats showed a strong correlation between cognitive ability improvement and bodyweight loss; (v) besides, DYP could also regulate the metabolic pathways of carbohydrate, amino acid, nucleotide, and energy by affecting related biological functions. CONCLUSIONS: The results supported that DYP can improve MD animals' learning and memory ability by restoring the intestinal flora disorder and callback the abnormal biochemical indexes in serum, closely related to the "bacteria-gut-brain axis".


Assuntos
Codonopsis , Microbioma Gastrointestinal , Animais , Transtornos da Memória/tratamento farmacológico , Pós , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/farmacologia
3.
Food Funct ; 10(5): 2881-2887, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31070208

RESUMO

Three dihydrochalcone-derived polyphenols, huperolides A-C (1-3), along with thirteen known compounds (4-16) were isolated from the leaves of Malus hupehensis, the well-known tea crab apple in China. Their chemical structures were elucidated by extensive spectroscopic analysis including NMR (HSQC, HMBC, 1H-1H COSY and ROESY), HRMS and CD spectra. Huperolide A is a polyphenol with a new type of carbon skeleton, while huperolides B and C are a couple of atropisomers, which were isolated from natural sources for the first time. The antihyperglycemic effects of the isolated compounds were evaluated based on assaying their inhibitory activities against α-glucosidase. As a result, phlorizin (4), 3-hydroxyphloridzin (5), 3-O-coumaroylquinic acid (12) and ß-hydroxypropiovanillone (15) showed significant concentration-dependent inhibitory effects on α-glucosidase. Therefore, those compounds might be responsible for the antihyperglycemic effect of this herb, and are the most promising compounds to lead discovery of drugs against diabetes.


Assuntos
Chalconas/química , Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/química , Malus/química , Extratos Vegetais/química , Folhas de Planta/química , Polifenóis/química , China , Humanos , Análise Espectral , alfa-Glucosidases/química
4.
Appl Biochem Biotechnol ; 159(1): 110-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19266320

RESUMO

The high demand of human placenta-derived mesenchymal stem cells (hPDMSCs) for therapeutic applications requires reproducible production of large numbers of well-characterized cells under well-controlled conditions. However, no method for fast hPDMSCs proliferation has yet been reported. In the present study, the feasibility of using a stirred bioreactor system to expand hPDMSCs was examined. hPDMSCs were cultured either in stirred bioreactors or in tissue culture flasks (T-flasks) for 5 days. Total cell density and several parameters of physical microenvironments were monitored in the two culture systems every 24 h. The maintenance of the antigenic phenotype of hPDMSCs before and after culturing in the stirred bioreactor system was cytometrically assessed. Data suggested that the physical microenvironment in the stirred bioreactors was much more favorable than that of the T-flasks. At the end of 144 h culturing, the total cell number was increased 1.73 times from the T-flasks to the stirred bioreactors. In addition, hPDMSCs could maintain their antigenic phenotype when cultured in stirred bioreactors. These results provide the initial assessment for large-scale hPDMSCs production using suspension culture bioreactors.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Placenta/citologia , Contagem de Células , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Feminino , Humanos
5.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 25(6): 1385-9, 2008 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-19166215

RESUMO

Samples of healthy and full-term human umbilical cord blood samples were obtained asceptically. Mesenchymal stem cells (MSCs) were isolated by lymphocyte separation medium, and were characterized morphologically by fluorescence-activated cell sorting analysis. Differentiation of chondroblast and osteoblast was induced by 10 ng/ml TGF-beta, 100 ng/ml insulin and 10(-7) mol/L decaesadril, 6.25 microg/ml siderophilin, 10 mmol/L beta-sodium glycerophosphate, 50 microg/ml antiscorbic acid, respectirely; the aim was to investigate the potentiality of differentiation. Umbilical cord blood-derived MSCs were stained positive for MSCs marker CD13, CD90, CD166, CD73, CD44 and HLA-AB, but were negative for hematopoietic stem cell marker CD45, CD34 and HLA-DR. After 21 days induction, Toluidine Blue staining and von-Kossa staining were positive. Immunocytochemistry showed that Collagen II expressed in the induced cells. The results demonstrated that mesenchymal stem cells can be isolated from human umbilical cord blood and differentiated into chondroblasts and osteoblasts in vitro.


Assuntos
Diferenciação Celular , Condrócitos/citologia , Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/química , Separação Celular , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA