Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 31(6): 850-865.e10, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38697109

RESUMO

Human pluripotent stem cell-derived ß cells (hPSC-ß cells) show the potential to restore euglycemia. However, the immature functionality of hPSC-ß cells has limited their efficacy in application. Here, by deciphering the continuous maturation process of hPSC-ß cells post transplantation via single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), we show that functional maturation of hPSC-ß cells is an orderly multistep process during which cells sequentially undergo metabolic adaption, removal of negative regulators of cell function, and establishment of a more specialized transcriptome and epigenome. Importantly, remodeling lipid metabolism, especially downregulating the metabolic activity of ceramides, the central hub of sphingolipid metabolism, is critical for ß cell maturation. Limiting intracellular accumulation of ceramides in hPSC-ß cells remarkably enhanced their function, as indicated by improvements in insulin processing and glucose-stimulated insulin secretion. In summary, our findings provide insights into the maturation of human pancreatic ß cells and highlight the importance of ceramide homeostasis in function acquisition.


Assuntos
Diferenciação Celular , Ceramidas , Homeostase , Células Secretoras de Insulina , Células-Tronco Pluripotentes , Humanos , Ceramidas/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Animais
2.
Nat Med ; 28(2): 272-282, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35115708

RESUMO

Human pluripotent stem-cell-derived islets (hPSC-islets) are a promising cell resource for diabetes treatment1,2. However, this therapeutic strategy has not been systematically assessed in large animal models physiologically similar to humans, such as non-human primates3. In this study, we generated islets from human chemically induced pluripotent stem cells (hCiPSC-islets) and show that a one-dose intraportal infusion of hCiPSC-islets into diabetic non-human primates effectively restored endogenous insulin secretion and improved glycemic control. Fasting and average pre-prandial blood glucose levels significantly decreased in all recipients, accompanied by meal or glucose-responsive C-peptide release and overall increase in body weight. Notably, in the four long-term follow-up macaques, average hemoglobin A1c dropped by over 2% compared with peak values, whereas the average exogenous insulin requirement reduced by 49% 15 weeks after transplantation. Collectively, our findings show the feasibility of hPSC-islets for diabetic treatment in a preclinical context, marking a substantial step forward in clinical translation of hPSC-islets.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Glicemia , Diabetes Mellitus Experimental/terapia , Humanos , Insulina , Transplante das Ilhotas Pancreáticas/fisiologia , Primatas
3.
Addict Biol ; 24(4): 577-589, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29569345

RESUMO

Alcohol addiction is a chronic neuropsychiatric disorder that represents one of the most serious global public health problems. Yet, currently there still lacks an effective pharmacotherapy. Omega-3 polyunsaturated fatty acids (N-3 PUFAs) have exhibited beneficial effects in a variety of neurological disorders, particularly in reversing behavioral deficits and neurotoxicity induced by prenatal alcohol exposure and binge drinking. In the present study, we investigated if fish oil, which is rich in N-3 PUFAs, had beneficial effects on preventing relapse and alleviating withdrawal symptoms after chronic alcohol exposure. Our results demonstrated that fish oil significantly reduced the chronic alcohol exposure-induced aberrant dendritic morphologic changes of the medium-sized spiny neurons in the core and the shell of nucleus accumbens. This inhibited the expression of AMPAR2-lacking AMPARs and their accumulation on the post synaptic membranes of medium-sized spiny neurons and eventually alleviated withdrawal symptoms and alcohol dependence. Our study therefore suggests that N-3 PUFAs are promising for treating withdrawal symptoms and alcohol dependence.


Assuntos
Alcoolismo/patologia , Depressores do Sistema Nervoso Central/farmacologia , Dendritos/efeitos dos fármacos , Etanol/farmacologia , Óleos de Peixe/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Convulsões por Abstinência de Álcool , Animais , Dendritos/patologia , Locomoção/efeitos dos fármacos , Camundongos , Núcleo Accumbens/citologia , Núcleo Accumbens/patologia , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/metabolismo , Recidiva , Sinapses/patologia
4.
Mol Neurobiol ; 54(9): 7327-7334, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27815837

RESUMO

Depression is associated with somatic immune changes, and neuroinflammation is now recognized as hallmark for depressive disorders. N-3 (or omega-3) polyunsaturated fatty acids (PUFAs) are well known to suppress neuroinflammation, reduce oxidative stress, and protect neuron from injury. We pretreated animals with fish oil and induced acute depression-like behaviors with systemic lipopolysaccharide (LPS) injection. The levels of cytokines and stress hormones were determined from plasma and different brain areas. The results showed that fish oil treatment prevent LPS-induce depressive behavior by suppression of neuroinflammation. LPS induced acute neuroinflammation in different brain regions, which were prevented in fish oil fed mice. However, neither LPS administration nor fish oil treatment has strong effect on stress hormone secretion in the hypothalamus and adrenal. Fish oil might provide a useful therapy against inflammation-associated depression.


Assuntos
Depressão/induzido quimicamente , Depressão/prevenção & controle , Óleos de Peixe/administração & dosagem , Lipopolissacarídeos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Depressão/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia
5.
Mol Neurobiol ; 54(5): 3317-3326, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27167127

RESUMO

Currently no effective therapies are available for the treatment of traumatic brain injury (TBI). Early intervention that specifically provides neuroprotection is of most importance which profoundly influences the outcome of TBI. In the present study, we adopted a closed-skull mild TBI model to investigate potential roles of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in protecting against TBI. Using two-photon laser scanning microscopy (2PLSM), parenchymal cell death and reactive oxidative species (ROS) expression were directly observed and recorded after TBI through a thinned skull bone window. Fat-1 mice with high endogenous ω-3 PUFAs significantly inhibited ROS expression and attenuated parenchymal cell death after compression injury during the early injury phase. Elevated generation of glutathione (GSH) and neuroprotectin D1 (NPD1) in the parenchyma of fat-1 mice could be the contributor to the beneficial role of ω-3 PUFAs in TBI. The results of the study suggest that ω-3 PUFAs is an effective neuroprotectant as an early pharmacological intervention for TBI and the information derived from this study may help guide dietary advice for those who are susceptible to repetitive mild TBI.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Encéfalo/patologia , Ácidos Graxos Ômega-3/metabolismo , Animais , Caderinas/metabolismo , Morte Celular/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/metabolismo , Glutationa/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Espécies Reativas de Oxigênio/metabolismo
6.
Mol Neurobiol ; 53(9): 6482-6488, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26611833

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert therapeutic potential in a variety of neurological disorders, including ischemic stroke. However, the underlying mechanisms still lack investigation. Here, we report that cultured cortical neurons isolated from fat-1 mice with high endogenous n-3 PUFAs were tolerant to oxygen-glucose deprivation/reperfusion (OGD/R) injury. Fat-1 neurons exhibited significantly attenuated reactive oxygen species (ROS) activation induced by OGD/R injury, upregulated antiapoptotic proteins Bcl-2 and Bcl-xL, and reduced cleaved caspase-3. Exogenous administration of docosahexaenoic acid (DHA), a major component of the n-3 PUFA family, resulted in similar protective effects on cultured cortex neurons. We further verified the protective effects of n-3 PUFAs in vivo, using a mini ischemic model with a reproducible cortical infarct and manifest function deficits by occlusion of the distal branch of the middle cerebral artery with focused femtosecond laser pulses. The Fat-1 animals showed decreased ROS expression and higher level of glutathione in the injured brain, associated with improved functional recovery. We therefore provide evidence that n-3 PUFAs exert their protective effects against ischemic injury both in vitro and in vivo, partly through inhibiting ROS activation.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Córtex Cerebral/patologia , Ácidos Graxos Ômega-3/uso terapêutico , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Animais , Isquemia Encefálica/fisiopatologia , Caderinas/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácidos Graxos Ômega-3/farmacologia , Feminino , Glucose/deficiência , Glutationa/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Regulação para Cima/efeitos dos fármacos
7.
J Lipid Res ; 55(7): 1288-97, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-24875538

RESUMO

Transient global cerebral ischemia, one of the consequences of cardiac arrest and cardiovascular surgery, usually leads to delayed death of hippocampal cornu Ammonis1 (CA1) neurons and cognitive deficits. Currently, there are no effective preventions or treatments for this condition. Omega-3 (ω-3) PUFAs have been shown to have therapeutic potential in a variety of neurological disorders. Here, we report that the transgenic mice that express the fat-1 gene encoding for ω-3 fatty acid desaturase, which leads to an increase in endogenous ω-3 PUFAs and a concomitant decrease in ω-6 PUFAs, were protected from global cerebral ischemia injury. The results of the study show that the hippocampal CA1 neuronal loss and cognitive deficits induced by global ischemia insult were significantly less severe in fat-1 mice than in WT mice controls. The protection against global cerebral ischemia injury was closely correlated with increased production of resolvin D1, suppressed nuclear factor-kappa B activation, and reduced generation of pro-inflammatory mediators in the hippocampus of fat-1 mice compared with WT mice controls. Our study demonstrates that fat-1 mice with high endogenous ω-3 PUFAs exhibit protective effects on hippocampal CA1 neurons and cognitive functions in a global ischemia injury model.


Assuntos
Isquemia Encefálica/prevenção & controle , Região CA1 Hipocampal/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Neurônios/metabolismo , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Região CA1 Hipocampal/patologia , Caderinas/genética , Caderinas/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/prevenção & controle , Camundongos , Camundongos Mutantes , Neurônios/patologia
8.
PLoS One ; 8(12): e84504, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376815

RESUMO

Dopaminergic differentiation of embryonic stem cells (ESCs) gains more and more attention worldwide owing to its potential use for neurorestorative therapy for the treatment of Parkinson's disease. The conventional 2D cell culture on petri dishes with various animal derived substrata such as collagen gels, laminin, and Matrigel is widely used to induce dopaminergic differentiation and it may limit the efficiency in the generation of dopaminergic neurons from ESCs and prevent their application for human therapies. Here, we reported that a self-assembling peptide made from natural amino acids has a property to generate a true 3D environment for dopaminergic differentiation. Mouse ESCs (R1) and mouse iPSCs (TTF-1) embedded in RADA16-I peptide-derived nanofiber scaffolds led to a marked increase in dopaminergic differentiation compared to the laminin-coated 2D culture or Matrigel-encapsulated 3D culture. These differentiated neurons expressed specific dopaminergic markers and produced appropriate patterns of action potential firing. Consistent with the increase in the number of dopaminergic neurons differentiated from R1 or TTF-1 in the self-assembling peptide nanofiber scaffold (SAPNS), both the expression levels of genes that involve in dopaminergic differentiation and maturation and the dopamine release in SAPNS culture were significantly elevated. The results of the study suggest that SAPNS provides a promising 3D culture system for dopaminergic differentiation.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Neurônios Dopaminérgicos/citologia , Nanofibras/química , Células-Tronco Pluripotentes/fisiologia , Alicerces Teciduais/química , Análise de Variância , Animais , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica/fisiologia , Imuno-Histoquímica , Camundongos , Técnicas de Patch-Clamp , Peptídeos , Células-Tronco Pluripotentes/citologia , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA