Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Water Res ; 265: 122250, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39154399

RESUMO

The reducibility of iron oxides, depending on their properties, influences the kinetics of dissimilatory iron reduction (DIR) during vivianite recovery in sewage. This study elucidated the correlation between properties of iron oxides and kinetics of DIR during the long-term transformation into vivianite, mediated by Geobacter sulfurreducens PCA and sewage. The positive correlation between surface reactivity of iron oxides and reduction rate constant (k) influenced the terminal vivianite recovery efficiency. Akaganeite with the highest adhesion work and surface energy required the lowest reduction energy (Ea), obtained the highest k of 1.36 × 10-2 day-1 and vivianite recovery efficiency of 43 %. The vivianite yield with akaganeite as iron source was 76-164 % higher than goethite, hematite, feroxyhyte, and ferrihydrite in sewage. The distribution of P with akaganeite during DIR in sewage further suggested a more efficient pathway of direct vivianite formation via bio-reduced Fe(II) rather than indirect reduction of ferric phosphate precipitates. Thus, akaganeite was screened out as superior iron source among various iron oxides for vivianite recovery, which provided insights into the fate of iron sources and the cycle of P in sewage.

2.
Bioresour Technol ; 411: 131242, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122126

RESUMO

Applied voltage is a crucial parameter in hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) systems for enhancing methane production from waste activated sludge (WAS). This study explored the impact of applied voltage on the initial biofilm formation on electrodes during the MEC-AD startup using raw WAS (Rr) and heat-pretreated WAS (Rh). The findings indicated that the maximum methane productivity for Rr and Rh were 3.4 ± 0.5 and 3.4 ± 0.2 mL/gVSS/d, respectively, increasing 1.5 times and 2.6 times over the productivity at 0 V. The biomass on electrode biofilms for Rr and Rh at 0.8 V increased by 70 % and 100 % compared to 0 V. The core functional microorganisms in the cathode biofilm were Methanobacterium and Syntrophomonas, and Geobacter in the anode biofilm, enhancing methane production through syntrophism and direct interspecies electron transfer, respectively. These results offer academic insights into optimizing AD functional electrode biofilms by applying voltage.

3.
J Hazard Mater ; 474: 134762, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38823099

RESUMO

Bioremediation of cadmium (Cd) pollution, a recognized low-carbon green environmental protection technology, is significantly enhanced by the discovery of Cd-tolerant microorganisms and their underlying tolerance mechanisms. This study presents Colpoda sp., a soil ciliate with widespread distribution, as a novel bioindicator and bioremediator for Cd contamination. With a 24 h-LC50 of 5.39 mg l-1 and an IC50 of 24.85 µg l-1 in Cd-contaminated water, Colpoda sp. achieves a maximum bioaccumulation factor (BAF) of 3.58 and a Cd removal rate of 32.98 ± 0.74 % within 96 h. The toxic responses of Colpoda sp. to Cd stress were assessed through cytological observation with transmission electron microscopy (TEM), oxidative stress kinase activity, and analysis of Cd-metallothionein (Cd-MTs) and the cd-mt gene via qRT-PCR. The integrated biomarker response index version 2 (IBRv2) and structural equation models (SEM) were utilized to analyze key factors and mechanisms, revealing that the up-regulation of Cd-MTs and cd-mt expression, rather than the oxidative stress system, is the primary determinant of Cd accumulation and tolerance in Colpoda sp. The ciliate's ability to maintain growth under 24.85 µg l-1 Cd stress and its capacity to absorb and accumulate Cd particles from water into cells are pivotal for bioremediation. A new mathematical formula and regression equations based on Colpoda sp.'s response parameters have been established to evaluate environmental Cd removal levels and design remediation schemes for contaminated sites. These findings provide a novel bioremediation and monitoring pathway for Cd remobilization and accumulation in soil and water, potentially revolutionizing the governance of Cd pollution.


Assuntos
Biodegradação Ambiental , Cádmio , Cilióforos , Metalotioneína , Poluentes do Solo , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Cilióforos/efeitos dos fármacos , Cilióforos/metabolismo , Metalotioneína/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
4.
Environ Sci Technol ; 58(27): 12028-12041, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38838251

RESUMO

Recent discoveries indicate that several insect larvae are capable of ingesting and biodegrading plastics rapidly and symbiotically, but the ecological adaptability of the larval gut microbiome to microplastics (MPs) remains unclear. Here, we described the gut microbiome assemblage and MP biodegradation of superworms (Zophobas atratus larvae) fed MPs of five major petroleum-based polymers (polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate) and antibiotics. The shift of molecular weight distribution, characteristic peaks of C═O, and metabolic intermediates of residual polymers in egested frass proved depolymerization and biodegradation of all MPs tested in the larval intestines, even under antibiotic suppression. Superworms showed a wide adaptation to the digestion of the five polymer MPs. Antibiotic suppression negatively influenced the survival rate and plastic depolymerization patterns. The larval gut microbiomes differed from those fed MPs and antibiotics, indicating that antibiotic supplementation substantially shaped the gut microbiome composition. The larval gut microbiomes fed MPs had higher network complexity and stability than those fed MPs and antibiotics, suggesting that the ecological robustness of the gut microbiomes ensured the functional adaptability of larvae to different MPs. In addition, Mantel's test indicated that the gut microbiome assemblage was obviously related to the polymer type, the plastic degradability, antibiotic stress, and larval survival rate. This finding provided novel insights into the self-adaptation of the gut microbiome of superworms in response to different MPs.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Microplásticos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Antibacterianos/farmacologia , Larva/efeitos dos fármacos , Biodegradação Ambiental , Plásticos
5.
Sci Total Environ ; 929: 172598, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642769

RESUMO

Wastewater treatment is an important source of non-CO2 greenhouse gases (GHGs). However, current quantification of these GHG emissions mainly employs unit-based measurements, where emissions from individual process units are identified, leading to large uncertainties of overall emissions. Here we introduce plant-integrated measurements, where emissions from the whole plant are measured through the off-gas pipelines of the enclosed facility, to quantify methane (CH4) and nitrous oxide (N2O) emissions from an underground municipal wastewater treatment plant (WWTP) in southern China. Our results show that the primary oxic tank contributes the largest in total CH4 and N2O emissions, with an average fraction of over 80 % and over 90 %, respectively. This can be attributed to the vigorous aeration process, which facilitates the transfer of dissolved CH4 and N2O from the liquid phase to the atmosphere through intensive air stripping. The plant-integrated measurements yield around 3-9 times higher emission factors of CH4 and N2O than the unit-based measurements. This difference in emission accounting is attributed to both varying survey durations of the two approaches and the omission of uncertain emission sources during unit-based measurements. The comparison between these two approaches indicates that plant-integrated measurements are more applicable for emission quantification of the whole plant whereas unit-based measurements provide insights into the emission characteristics of individual process units. More plant-integrated measurements are needed in the future for more accurate emission accounting of WWTPs.

6.
Environ Sci Technol ; 58(15): 6647-6658, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563431

RESUMO

The biodegradation of polypropylene (PP), a highly persistent nonhydrolyzable polymer, by Tenebrio molitor has been confirmed using commercial PP microplastics (MPs) (Mn 26.59 and Mw 187.12 kDa). This confirmation was based on the reduction of the PP mass, change in molecular weight (MW), and a positive Δδ13C in the residual PP. A MW-dependent biodegradation mechanism was investigated using five high-purity PP MPs, classified into low (0.83 and 6.20 kDa), medium (50.40 and 108.0 kDa), and high (575.0 kDa) MW categories to access the impact of MW on the depolymerization pattern and associated gene expression of gut bacteria and the larval host. The larvae can depolymerize/biodegrade PP polymers with high MW although the consumption rate and weight losses increased, and survival rates declined with increasing PP MW. This pattern is similar to observations with polystyrene (PS) and polyethylene (PE), i.e., both Mn and Mw decreased after being fed low MW PP, while Mn and/or Mw increased after high MW PP was fed. The gut microbiota exhibited specific bacteria associations, such as Kluyvera sp. and Pediococcus sp. for high MW PP degradation, Acinetobacter sp. for medium MW PP, and Bacillus sp. alongside three other bacteria for low MW PP metabolism. In the host transcriptome, digestive enzymes and plastic degradation-related bacterial enzymes were up-regulated after feeding on PP depending on different MWs. The T. molitor host exhibited both defensive function and degradation capability during the biodegradation of plastics, with high MW PP showing a relatively negative impact on the larvae.


Assuntos
Microbiota , Tenebrio , Animais , Tenebrio/metabolismo , Tenebrio/microbiologia , Plásticos , Polipropilenos/metabolismo , Microplásticos , Peso Molecular , Poliestirenos , Larva/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental
7.
ACS Appl Mater Interfaces ; 15(46): 53488-53497, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37929338

RESUMO

Gas fermentation offers a carbon-neutral route for producing industrial feedstocks using autotrophic microbes to convert carbon dioxide (CO2) in waste gases, such as industrial emissions and biogas, into valuable chemicals or biofuels. However, slow microbial metabolism owing to low gaseous solubility causes significant challenges in gas fermentation. Although chemical or genetic manipulations have been explored to improve gas fermentation, they are either nonsustainable or complex. Herein, an artificial soil-like material (SLM) inspired by natural soil was fabricated to improve the growth and metabolism ofCupriavidus necatorfor enhanced poly-ß-hydroxybutyrate (PHB) biosynthesis from CO2 and hydrogen (H2). Porous SLM comprises low-cost nanoclay, boehmite, and starch and serves as a biocarrier to facilitate the colonization of bacteria and delivery of CO2 to bacteria. With 3.0 g/L SLM addition, the solubility of CO2 in water increased by ∼4 times and biomass and PHB production boosted by 29 and 102%, respectively, in the 24 h culture. In addition, a positive modulation was observed in the metabolism of PHB biosynthesis. PHB biosynthesis-associated gene expression was found to be enhanced in response to the SLM addition. The concentrations of intermediates in the metabolic pathway of PHB biosynthesis, such as pyruvate and acetyl-CoA, as well as reducing energy (ATP and NADPH) significantly increased with SLM addition. SLM also demonstrated the merits of easy fabrication, high stability, recyclability, and plasticity, thereby indicating its considerable potential for large-scale application in gas fermentation.


Assuntos
Dióxido de Carbono , Gases , Fermentação , Dióxido de Carbono/metabolismo , Gases/metabolismo , Hidrogênio , Bactérias/metabolismo , Biocombustíveis , Hidroxibutiratos/metabolismo
8.
J Hazard Mater ; 460: 132323, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666174

RESUMO

Passivation of nanoscale zero valent iron (nZVI, Fe0) impaired its longevity while black TiO2 (b-TiO2) suffered from restricted optical properties. Using a facile approach, a novel Z-scheme heterojunction catalyst (Fe0@CQDs-TiO2(b)) of nZVI decorated with carbon quantum dots (CQDs) implanted into b-TiO2 was designed. Characterization results revealed the optical potential of the passivation coating of nZVI. The incorporation of CQDs stimulated the creation of active •OH during the dark reaction, and led to an accelerated mobility of photo-excited carriers of b-TiO2 and optimized its band gap (narrowing from 2.36 eV to 2.15 eV) during the light reaction. The photo-elimination capacity of metronidazole (MNZ) on Fe0@CQDs-TiO2(b) (99.36%) was 2.64, 8.25 and 1.34 fold beyond that on nZVI, b-TiO2 and Fe0@b-TiO2, respectively. The assembled material offered excellent adaptability to environmental substrates, in addition to being virtually unaffected by tap (95.62%) and river water (92.62%). The mechanism of MNZ degradation was elaborated, and the combination of density functional theory (DFT) calculations and LC-MS discerned 12 intermediates and 3 routes. Toxicity assessment of these products was conducted to ensure no inadvertent negative environmental impacts arose. This work proposed an original direction and mechanism for the application of passivation layers in nZVI-based materials for environmental restoration.

9.
J Hazard Mater ; 459: 132054, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37473569

RESUMO

Sulfate radical-based advanced oxidation processes (AOPs) combined biological system was a promising technology for treating antibiotic wastewater. However, how pretreatment influence antibiotic resistance genes (ARGs) propagation remains largely elusive, especially the produced by-products (antibiotic residues and sulfate) are often ignored. Herein, we investigated the effects of zero valent iron/persulfate pretreatment on ARGs in bioreactors treating sulfadiazine wastewater. Results showed absolute and relative abundance of ARGs reduced by 59.8%- 81.9% and 9.1%- 52.9% after pretreatments. The effect of 90-min pretreatment was better than that of the 30-min. The ARGs reduction was due to decreased antibiotic residues and stimulated sulfate assimilation. Reduced antibiotic residues was a major factor in ARGs attenuation, which could suppress oxidative stress, inhibit mobile genetic elements emergence and resistant strains proliferation. The presence of sulfate in influent supplemented microbial sulfur sources and facilitated the in-situ synthesis of antioxidant cysteine through sulfate assimilation, which drove ARGs attenuation by alleviating oxidative stress. This is the first detailed analysis about the regulatory mechanism of how sulfate radical-based AOPs mediate in ARGs attenuation, which is expected to provide theoretical basis for solving concerns about by-products and developing practical methods to hinder ARGs propagation.


Assuntos
Genes Bacterianos , Águas Residuárias , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Sulfatos/farmacologia , Reatores Biológicos , Óxidos de Enxofre/farmacologia
10.
Water Res ; 239: 120027, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167853

RESUMO

Thallium (Tl+) is a trace metal with extreme toxicity and is highly soluble in water, posing a great risk to ecological and human safety. This work aimed to investigate the role played by Tl+ in regulating lipid accumulation in microalgae and the removal efficiency of Tl+. The effect of Tl+ on the cell growth, lipid production and Tl+ removal efficiency of Parachlorella kessleri R-3 was studied. Low concentrations of Tl+ had no significant effect on the biomass of microalgae. When the Tl+ concentration exceeded 5 µg L-1, the biomass of microalgae showed significant decrease. The highest lipid content of 63.65% and lipid productivity of 334.55 mg L-1 d-1 were obtained in microalgae treated with 10 and 5 µg L-1 Tl+, respectively. Microalgae can efficiently remove Tl+ and the Tl+ removal efficiency can reach 100% at Tl+ concentrations of 0-25 µg L-1. The maximum nitric oxide (NO) level of 470.48 fluorescence intensity (1 × 106 cells)-1 and glutathione (GSH) content of 343.51 nmol g-1 (fresh alga) were obtained under 5 µg L-1 Tl+ stress conditions. Furthermore, the exogenous donor sodium nitroprusside (SNP) supplemented with NO was induced in microalgae to obtain a high lipid content (59.99%), lipid productivity (397.99 mg L-1 d-1) and GSH content (430.22 nmol g-1 (fresh alga)). The corresponding analysis results indicated that NO could participate in the signal transduction pathway through modulation of reactive oxygen species (ROS) signaling to activate the antioxidant system by increasing the GSH content to eliminate oxidative damage induced by Tl+ stress. In addition, NO regulation of ROS signaling may enhance transcription factors associated with lipid synthesis, which stimulates the expression of genes related to lipid synthesis, leading to increased lipid biosynthesis in microalgae. Moreover, it was found that the change in Tl+ had little effect on the fatty acid components and biodiesel properties. This study showed that Tl+ stress can promote lipid accumulation in microalgae for biodiesel production and simultaneously effectively remove Tl+, which provided evidence that NO was involved in signal transduction and antioxidant defense, and improved the understanding of the interrelation between NO and ROS to regulate lipid accumulation in microalgae.


Assuntos
Metais Pesados , Microalgas , Humanos , Tálio/metabolismo , Antioxidantes , Espécies Reativas de Oxigênio/metabolismo , Biodegradação Ambiental , Biocombustíveis , Glutationa , Lipídeos , Transdução de Sinais , Biomassa
11.
Sci Total Environ ; 882: 163541, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37076005

RESUMO

Vivianite as a significant secondary mineral of dissimilatory iron reduction (DIR) exhibits marvelous potential to solve eutrophication as well as phosphorus shortage. Geobattery represents by natural organic matters (NOM) with rich functional groups influences bioreduction of natural iron mineral. Activated carbon (AC) which contains abundant functional groups is expected to serve as geobattery, but there remains insufficient understanding on its geobattery mechanism and how it benefits the vivianite formation. In this study, the charging and discharging cycle of "geobattery" AC enhanced extracellular electron transfer (EET) and vivianite recovery was demonstrated. Feeding with ferric citrate, AC addition increased vivianite formation efficiency by 141 %. The enhancement was attributed to the electron shuttle capacity of storage battery AC, which was contributed by the redox cycle between CO and O-H. Feeding with iron oxides, huge gap of redox potential between AC and Fe(III) minerals broke through the reduction energy barrier. Therefore the iron reduction efficiency of four Fe(III) minerals was accelerated to the same high level around 80 %, and the vivianite formation efficiency were increased by 104 %-256 % in pure culture batches. Except acting as storage battery, AC as a dry cell contributed 80 % to the whole enhancement towards iron reduction, in which O-H groups were the dominant driver. Due to the rechargeable nature and considerable electron exchange capacity, AC served as geobattery playing the role of both storage battery and dry cell on electron storaging and transferring to influence biogeochemical Fe cycle and vivianite recovery.

12.
Huan Jing Ke Xue ; 44(1): 180-188, 2023 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-36635806

RESUMO

To elucidate the pollution characteristics and ecological risks of pesticide micro-pollutants in typical drinking water sources in Southeast China, the detection frequency, detection concentration, and risk quotient of each pesticide for three different trophic levels of organisms (green algae, daphnia, and fish) were analyzed for a total of 55 commonly used pesticides in 19 categories, including benzimidazoles, amides, triazoles, and organophosphates, in seven reservoirs in Southeast China. Among the 55 pesticides analyzed, two pesticides (carbendazim and acetochlor) had a detection frequency of 100%, and 12 pesticides had a detection frequency of 80% or more. The highest detection concentration was found for carbendazim (77.7 ng·L-1), followed by that of acetochlor (51.6 ng·L-1). The results of the risk assessment showed that most of the pesticides were at low risk in the target areas. For the three organisms, acetochlor was the risk-dominant pesticide for green algae, whereas carbendazim was the risk-dominant pesticide for fish and daphnia.


Assuntos
Água Potável , Praguicidas , Poluentes Químicos da Água , Animais , Praguicidas/toxicidade , Praguicidas/análise , Água Potável/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Peixes , Medição de Risco , China
13.
Sci Total Environ ; 856(Pt 1): 159100, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174700

RESUMO

Hydrogen (H2) assisted ex-situ biogas upgrading and liquid chemicals production can augment the fossil fuel-dominated energy market, and alleviate CO2-induced global warming. Recent investigations confirmed that nanoscale zero-valent iron (nZVI) enabled the enhancement of anaerobic digestion for biogas production. However, little is known about the effect of nZVI on the downstream ex-situ biogas upgrading. Herein, different levels (0 mg L-1, 100 mg L-1, 200 mg L-1, 500 mg L-1, 1000 mg L-1, 2000 mg L-1) of nZVI were added for H2-assisted ex-situ biogas upgrading, to study whether nZVI could impact the biomethane purity and acetate yield for the first time. Results showed that all tested nZVI levels were favorable for biogas upgrading in the presence of H2, the highest biomethane content (94.1 %, v/v), the CO2 utilization ratio (95.9 %), and acetate yield (19.4 mmol L-1) were achieved at 500 mg L-1 nZVI, respectively. Further analysis indicated that increased biogas upgrading efficiency was related to an increase in extracellular polymeric substances, which ensures the microbial activity and stability of the ex-situ biogas upgrading. Microbial community characterization showed that the Petrimonas, Romboutsia, Acidaminococcus, and Clostridium predominated the microbiome during biogas upgrading at 500 mg L-1 nZVI with H2 supply. These results suggested that nZVI and H2 contributed jointly to promoting the bioconversion of CO2 in biogas to acetate. The findings could be helpful for paving a new way for efficient simultaneous ex-situ biogas upgrading and liquid chemicals recovery.


Assuntos
Biocombustíveis , Hidrogênio , Metano/química , Ferro , Dióxido de Carbono , Acetatos
14.
Sci Total Environ ; 858(Pt 3): 160098, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370783

RESUMO

High concentration phosphorus wastewater has attracted much attention due to the safety of water ecology and the potential crisis of phosphorus resource, which is caused by large amounts of phosphorus discharging into natural water bodies. Vivianite (Fe3(PO4)2·8H2O) crystallization has been considered as an effective technology for phosphorus recovery. In this study, we develop a potentially low-cost, sustainable approach to recover phosphorus from high concentration phosphorus wastewater using mine drainage as iron source. Inoculated with both sewage and Geobacter, mine drainage was suitable for vivianite recovery from high concentration phosphorus wastewater with PO43- concentration between 6 and 18 mM. When the PO43- concentration increased gradually, both phosphorus removal efficiency (RP) and vivianite recovery efficiency (RV) decreased significantly. The highest RV of 48 % was obtained with 9 mM PO43- in Geobacter batches (CJ2 batches), which was 15 % higher than that in the paralleled sewage batches (33 % in HJ2). Simultaneously, vivianite accounted for 91 % of the solid phosphate compounds in CJ2 batches due to the enhancement of Geobacter.


Assuntos
Ferro , Fósforo , Águas Residuárias , Fosfatos , Água
15.
Sci Total Environ ; 855: 158849, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36122730

RESUMO

In order to promote low-carbon sustainable operational management of the wastewater treatment plants (WWTPs), automatic control and optimal operation technologies, which devote to improving effluent quality, operational costs and greenhouse gas (GHG) emissions, have flourished in recent years. There is no consensus on the design procedure for optimal control/operation of sustainable WWTPs. In this review, we summarize recent researches on developing control and optimization strategies for GHG mitigation in WWTPs. Faced with the fact that direct carbon dioxide (CO2) emissions (considered biological origin) are generally not included in the carbon footprint of WWTPs, direct emissions (nitrous oxide (N2O), methane (CH4)) and indirect emissions are paid much attention. Firstly, the plant-wide models with GHG dynamic simulation, which are employed to design and evaluate the automatic control schemes as well as representative studies on identifying key factors affecting GHG emissions or comprehensive performance are outlined. Then, both traditional and advanced control methods commonly used in GHG mitigation are reviewed in detail, followed by the multi-objective optimization practices of control/operational parameters. Based on the mentioned control and (or) optimization strategies, a novel design framework for the optimal control/operation of sustainable WWTPs is proposed. The findings and design framework proposed in the paper will provide guidance for GHG mitigation and sustainable operation in WWTPs. It is foreseeable that more accurate and appropriate plant-wide models together with flexible control methods and intelligent optimization strategies will be developed to satisfy the upgrading requirements of WWTPs in the future.


Assuntos
Gases de Efeito Estufa , Purificação da Água , Efeito Estufa , Eliminação de Resíduos Líquidos/métodos , Óxido Nitroso/análise
16.
Bioresour Technol ; 364: 128069, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36208827

RESUMO

In this study, mannitol and mannitol-rich seaweed were fermented to investigate the relationship between substrate reduction degree and hydrogen production performance. The results showed that acetate was required in mannitol fermentation with an optimum acetate/mannitol mass ratio of 1:5. Hydrogen production and yield of mannitol fermentation reached 123.76 mL and 2.12 mol/mol-mannitol, respectively, 42.02 % and 26.95 % higher than that of glucose, respectively. The acetate was fully assimilated and the butyrate selectivity reached 100 % in the effluent. Redox potential and electron distribution showed that mannitol increased the overall electron input from mannitol and acetate, leading to the increase in hydrogen and butyrate generation. Hydrogen yield reached 2.33 mol/mol-mannitol with brown algae hydrolysate, which was the highest ever reported. This study demonstrated that substrate with a higher reduction degree could yield higher hydrogen and showed the great application potential of brown algae fermentation for the co-production of hydrogen and butyrate.

17.
Environ Sci Pollut Res Int ; 29(36): 55174-55186, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35316492

RESUMO

Lignocellulose degradation (LCD) was the key factor limiting the development of anaerobic fermentation (AF) by the cow dung (CD). In the research, the effects of cellulase pretreatment (CP) and microvoltage (MV) alone and combination on the gas production and LCD during the AF were investigated. The results showed that both CP and MV had an significant effect on the AF, though the synergistic reaction was more pronounced. The total biogas yield (TBY) could reach 11521 mL, and the highest methane production rate was 73% in the synergistic reactions, which was increased by 18.7% and 10.0% compared to CP and MV alone respectively. Meanwhile, the degradation rates of cellulose and lignin could be increased by 33.44% and 22.23%, respectively. The results of SEM, FT-IR and excitation emission matrix demonstrated that CP and MV played an important role in improving the fermentation efficiency. The microbial biomass change results indicated that the synergistic effect of CP and 0.8 V MV on the LCD was achieved by promoting the growth of lignocellulose-degrading bacteria. Moreover, the electricity could not only accelerate the movement of microorganisms and enzymes, but also promoted and enhanced the activity of enzymes, which provided an important reference for further development of the AF technology and the biogas industry.


Assuntos
Celulase , Anaerobiose , Animais , Biocombustíveis/análise , Bovinos , Celulase/metabolismo , Eletroquímica , Feminino , Fermentação , Lignina/química , Esterco/microbiologia , Metano/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Environ Res ; 205: 112541, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915032

RESUMO

Chemical absorption-biological reduction (CABR) process is an attractive method for NOX removal and Fe(II)EDTA regeneration is important to sustain high NOX removal. In this study a sustainable and eco-friendly sulfur cycling-mediated Fe(II)EDTA regeneration method was incorporated in the integrated biological flue gas desulfurization (FGD)-CABR system. Here, we investigated the NOX and SO2 removal efficiency of the system under three different flue gas flows (100 mL/min, 500 mL/min, and 1000 mL/min) and evaluated the feasibility of chemical Fe(III)EDTA reduction by sulfide in series of batch tests. Our results showed that complete SO2 removal was achieved at all the tested scenarios with sulfide, thiosulfate and S0 accumulation in the solution. Meanwhile, the total removal efficiency of NOX achieved ∼100% in the system, of which 3.2%-23.3% was removed in spray scrubber and 76.7%-96.5% in EGSB reactor along with no N2O emission. The optimal pH and S2-/Fe(III)EDTA for Fe(II)EDTA regeneration and S0 recovery was 8.0 and 1:2. The microbial community analysis results showed that the cooperation of heterotrophic denitrifier (Saprospiraceae_uncultured and Dechloromonas) and iron-reducing bacteria (Klebsiella and Petrimonas) in EGSB reactor and sulfide-oxidizing, nitrate-reducing bacteria (Azoarcus and Pseudarcobacter) in spray scrubber contributed to the efficient removal of NOX in flue gas.


Assuntos
Óxidos de Nitrogênio , Enxofre , Bactérias , Ácido Edético , Óxido Nítrico , Oxirredução , Dióxido de Enxofre
19.
Water Res ; 201: 117370, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175729

RESUMO

Sewer deterioration caused by sulfide-induced concrete corrosion is spreading worldwide. Within the strategies to overcome this problem, dosing iron salts into the pipeline has attracted more attention. However, there is not yet research that evaluates this method whether it is overall environmentally friendly. Here, we conducted a comparative Life Cycle Assessment (LCA) to adjudge the benefits of dosing ferric chloride over non-dosing option in three different H2S concentration levels (High, Medium, Low). Compared with taking no precautions, dosing ferric chloride performs better for all impact categories only in High H2S situation, which can reduce the environmental impacts by 10% to 50%. In Medium H2S situation, dosing ferric chloride shows lower environmental impacts of Global Warming, Fossil Fuel Depletion, Acidification, and Eutrophication, while leads to the deterioration of Human Toxicity and Freshwater Ecotoxicity by 10% and 13%, respectively. In Low H2S situation, dosing ferric chloride performs even worse for all impact categories. Therefore, from an LCA perspective, this study recommends iron salts dosing technology to be applied in severe corrosion conditions caused by high H2S concentrations. Contribution analysis shows that asphalt and diesel consumed during the sewer construction and renovation dominate all impact categories for non-dosing option, whereas the main contributor of Human Toxicity and Freshwater Ecotoxicity is shifted to ferric chloride production in dosing option, average at around 50%. Sensitivity analysis on the length of pipes protected by iron salts confirms that the initial dosing location is more preferable to be set at upstream of the sewer system. From an LCA perspective, as alternatives to ferric chloride, ferrous chloride is superior in all impact categories, and ferric sulfate could reduce the toxicity-related impacts and other effects at the expense of exacerbation of acidification. In the end, a systematic optimization of salts dosing should be considered in urban sewer management practice.


Assuntos
Sais , Esgotos , Animais , Corrosão , Humanos , Ferro , Estágios do Ciclo de Vida
20.
Bioresour Technol ; 333: 125166, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33895668

RESUMO

Anaerobic co-digestion of a cow manure-cotton straw mixture (CCM) has been shown to promote methanogenesis, but the recalcitrant crystal structure of organic polymers in CCM hinders its hydrolysis during anaerobic digestion (AD). Here, the efficacy of different pretreatment methods based on potassium ferrate (PF) and peroxymonosulfate (PMS) was evaluated to facilitate CCM decomposition and methanogenesis during AD. The maximum lignocellulosic removal rate (62.5%), the highest volatile fatty acids (VFAs) (7769.6 mg/L), and cumulative methane yield (109.4 mL CH4/g VS) were both achieved in PF-pretreated samples after the digestion process. The dominant bacterial populations in PF-pretreated CCM were affiliated with Sideroxydans, Herbinix, Clostridium, and Smithella, which played an important role in the hydrolysis and acidification of CCM. The enrichment of Methanosarcina and Methanobacterium and highly-effective acidogenesis might account for the highest methane yield in the PF-pretreated group.


Assuntos
Esterco , Microbiota , Anaerobiose , Animais , Biocombustíveis , Reatores Biológicos , Bovinos , Digestão , Feminino , Compostos de Ferro , Metano , Peróxidos , Compostos de Potássio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA