RESUMO
Aberrant glycosylation, resulting from dysregulated expression of glycosyltransferases, is a prevalent feature of cancer cells. N-acetylgalactosaminyltransferase-14 (GALNT14) serves as a pivotal enzyme responsible for initiating O-GalNAcylation. It remains unclear whether and how GALNT14 affects lung adenocarcinoma (LUAD). Here, GALNT14 expression in LUAD was analyzed by searching public databases and verified by examining clinical samples. Bioinformatics, LC-MS/MS, RNA-seq, and RIP-seq analyses were used to uncover the mechanism underlying GALNT14. We observed that GALNT14 was frequently overexpressed in LUAD tissues. High GALNT14 expression was positively associated with advanced TNM stage, larger tumor size, and unfavorable prognosis. Functionally, GALNT14 facilitated LUAD cell proliferation, migration, and invasion in vitro and accelerated tumor growth in vivo. Mechanistically, GALNT14 reduced the accumulation of endogenous reactive oxygen species (ROS) to exert its oncogenic function via O-glycosylating hnRNPUL1 to upregulate AKR1C2 expression. Meanwhile, GALNT14 expression was directly modulated by miR-125a.These findings indicated that GALNT14-mediated O-GalNAcylation could drive LUAD progression via eliminating ROS and might be a valuable therapeutic target.
RESUMO
PPM1F has been shown to play diverse biological functions in the progression of multiple tumors. PPM1F controls the T788/T789 phosphorylation switch of ITGB1 and regulates integrin activity. However, the impacts of PPM1F and ITGB1 on ovarian cancer (OV) progression remain unclear. Whether there is such a regulatory relationship between PPM1F and ITGB1 in ovarian cancer has not been studied. Therefore, the purpose of this study is to elucidate the function and the mechanism of PPM1F in ovarian cancer. The expression level and the survival curve of PPM1F were analyzed by databases. Gain of function and loss of function were applied to explore the function of PPM1F in ovarian cancer. A tumor formation assay in nude mice showed that knockdown of PPM1F inhibited tumor formation. We tested the effect of PPM1F on ITGB1 dephosphorylation in ovarian cancer cells by co-immunoprecipitation and western blotting. Loss of function was applied to investigate the function of ITGB1 in ovarian cancer. ITGB1-mut overexpression promotes the progression of ovarian cancer. Rescue assays showed the promoting effect of ITGB1-wt on ovarian cancer is attenuated due to the dephosphorylation of ITGB1-wt by PPM1F. PPM1F and ITGB1 play an oncogene function in ovarian cancer. PPM1F regulates the phosphorylation of ITGB1, which affects the occurrence and development of ovarian cancer.
RESUMO
Acetyl-CoAacyltransferase2 (ACAA2) is a key enzyme in the fatty acid oxidation pathway that catalyzes the final step of mitochondrial ß oxidation, which plays an important role in fatty acid metabolism. The expression of ACAA2 is closely related to the occurrence and malignant progression of tumors. However, the function of ACAA2 in ovarian cancer is unclear. The expression level and prognostic value of ACAA2 were analyzed by databases. Gain and loss of function were carried out to explore the function of ACAA2 in ovarian cancer. RNA-seq and bioinformatics methods were applied to illustrate the regulatory mechanism of ACAA2. ACAA2 overexpression promoted the growth, proliferation, migration, and invasion of ovarian cancer, and ACAA2 knockdown inhibited the malignant progression of ovarian cancer as well as the ability of subcutaneous tumor formation in nude mice. At the same time, we found that OGT can induce glycosylation modification of ACAA2 and regulate the karyoplasmic distribution of ACAA2. OGT plays a vital role in ovarian cancer as a function of oncogenes. In addition, through RNA-seq sequencing, we found that ACAA2 regulates the expression of DIXDC1. ACAA2 regulated the malignant progression of ovarian cancer through the WNT/ß-Catenin signaling pathway probably. ACAA2 is an oncogene in ovarian cancer and has the potential to be a target for ovarian cancer therapy.
Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Via de Sinalização Wnt , Prognóstico , Carcinogênese/genéticaRESUMO
BACKGROUND: Phosphoglycerate kinase 1 (PGK1) is a metabolic enzyme that participates in various biological and pathological processes. Dysregulated PGK1 has been observed in numerous malignancies. However, whether and how PGK1 affects non-small cell lung cancer (NSCLC) is not yet fully elucidated. METHODS: Herein, the non-metabolic function of PGK1 in NSCLC was explored by integrating bioinformatics analyses, cellular experiments, and nude mouse xenograft models. The upstream regulators and downstream targets of PGK1 were examined using multiple techniques such as RNA sequencing, a dual-luciferase reporter assay, Co-immunoprecipitation, and Western blotting. RESULTS: We confirmed that PGK1 was upregulated in NSCLC and this upregulation was associated with poor prognosis. Further in vitro and in vivo experiments demonstrated the promoting effects of PGK1 on NSCLC cell growth and metastasis. Additionally, we discovered that PGK1 interacted with and could be O-GlcNAcylated by OGT. The inhibition of PGK1 O-GlcNAcylation through OGT silencing or mutation at the T255 O-GlcNAcylation site could weaken PGK1-mediated NSCLC cell proliferation, colony formation, migration, and invasion. We also found that a low miR-24-3p level led to an increase in OGT expression. Additionally, PGK1 exerted its oncogenic properties by augmenting ERK phosphorylation and MCM4 expression. CONCLUSIONS: PGK1 acted as a crucial mediator in controlling NSCLC progression. The miR-24-3p/OGT axis was responsible for PGK1 O-GlcNAcylation, and ERK/MCM4 were the downstream effectors of PGK1. It appears that PGK1 might be an attractive therapeutic target for the treatment of NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Proliferação de Células/genética , Regulação para Cima , Linhagem Celular Tumoral , Movimento Celular/genética , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismoRESUMO
Visceral white nodules disease (VWND) caused by Pseudomonas plecoglossicida is a common disease in cage-farmed large yellow croaker (Larimichthys crocea) in China. VWND usually occurred at water temperature of 16-19â, resulting in high mortality in farmed large yellow croaker. Now, P. plecoglossicida as its pathogen has been considered nonpathogenic at 7-12â. During February 2019, an infectious disease outbreak was observed in cage-farmed large yellow croaker at a water temperature of 12â in Ningde, China. This disease is characterized by white granulomatous lesions in internal organs of the diseased fish, which was similar with the symptoms of the VWND in large yellow croaker. Then, we isolated a bacterial strain named PQLYC4 from visceral lesions of the diseased fish. The experimental infection studies demonstrated that the strain PQLYC4 was the pathogen of the disease, which was further identified as P. plecoglossicida by the analysis of morphology, 16s rRNA gene homology and average nucleotide identity based on the whole genome sequence. Our results revealed that P. plecoglossicida strain PQLYC4 could cause the outbreak of the VWND at 12â, a water temperature lower than that reported previously, thus providing new knowledges of prevalence and prevention of the VWND in large yellow croaker.
Assuntos
Doenças dos Peixes/microbiologia , Infecções por Pseudomonas/veterinária , Pseudomonas/patogenicidade , Temperatura , Animais , Aquicultura , China , Surtos de Doenças , Genoma Bacteriano , Perciformes , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Infecções por Pseudomonas/patologia , RNA Ribossômico 16S/genéticaRESUMO
Tumor necrosis factor-α (TNF-α) plays crucial roles in cell development, proliferation, apoptosis, inflammation, and immunity. TNF-α genes have been identified in various fish species, however, their biological functions remain to be further clarified. In this study, we identified a novel TNF-α homologue (LcTNF-α2) from large yellow croaker (Larimichthys crocea), which shares a low amino acid sequence identity to the previously reported large yellow croaker TNF-α (LcTNF-α1). The open reading frame of LcTNF-α2 is 714 nucleotides long, encoding a peptide of 237 amino acids (aa). The deduced LcTNF-α2 protein contains a 23-aa transmembrane region, a TACE restriction site at residues T71/L72, a TNF family signature (I108- F135), and two conserved cysteine residues (C39 and C179), as found in other known TNF-α sequences. Both LcTNF-α1 and LcTNF-α2 genes were constitutively expressed in all examined tissues and significantly up-regulated in the spleen and head kidney by Vibrio alginolyticus. Their transcripts were also detected in primary head kidney monocytes/macrophages (MO/MÏs), lymphocytes (PKLs), granulocytes (PKGs), and large yellow croaker head kidney (LYCK) cell line and significantly increased in these cell types by inactivated Vibrio alginolyticus. Recombinant LcTNF-α1 and LcTNF-α2 proteins (rLcTNF-α1 and rLcTNF-α2) produced in Pichia pastoris not only significantly increased the production of reactive oxygen species (ROS), but also promoted the expression of proinflammatory cytokines (IL-1ß, IL-6,IL-8, and TNF-α1) in MO/MÏs from large yellow croaker. Even more, after stimulation with rLcTNF-α1 and rLcTNF-α2, the production of nitrogen oxide (NO) and the expression of inducible NO synthase (iNOS) gene were significantly up-regulated. However, only rLcTNF-α1 remarkedly enhanced the phagocytosis of MO/MÏs and increased the expression of TNF-α2 in MO/MÏs. These results therefore indicated that LcTNF-α1 and LcTNF-α2 both play roles in promoting activation of head kidney MO/MÏs.