Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Commun ; 15(1): 9, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167274

RESUMO

PD-1 is a co-inhibitory receptor expressed by CD8+ T cells which limits their cytotoxicity. PD-L1 expression on cancer cells contributes to immune evasion by cancers, thus, understanding the mechanisms that regulate PD-L1 protein levels in cancers is important. Here we identify tumor-cell-expressed otubain-2 (OTUB2) as a negative regulator of antitumor immunity, acting through the PD-1/PD-L1 axis in various human cancers. Mechanistically, OTUB2 directly interacts with PD-L1 to disrupt the ubiquitination and degradation of PD-L1 in the endoplasmic reticulum. Genetic deletion of OTUB2 markedly decreases the expression of PD-L1 proteins on the tumor cell surface, resulting in increased tumor cell sensitivity to CD8+ T-cell-mediated cytotoxicity. To underscore relevance in human patients, we observe a significant correlation between OTUB2 expression and PD-L1 abundance in human non-small cell lung cancer. An inhibitor of OTUB2, interfering with its deubiquitinase activity without disrupting the OTUB2-PD-L1 interaction, successfully reduces PD-L1 expression in tumor cells and suppressed tumor growth. Together, these results reveal the roles of OTUB2 in PD-L1 regulation and tumor evasion and lays down the proof of principle for OTUB2 targeting as therapeutic strategy for cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Linfócitos T Citotóxicos/metabolismo , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Preparações Farmacêuticas/metabolismo , Tioléster Hidrolases/metabolismo
2.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35688558

RESUMO

BACKGROUND: Oncolytic viruses (OVs) are capable to inflame the tumor microenvironment (TME) and elicit infiltrating tumor-specific T cell responses. However, OV treatment negatively alters the cancer-immune set point in tumors to attenuate the antitumor immune response, which suggests the necessity of dissecting the immune landscape of the virus-treated tumors and developing novel strategies to maximize the potential of OVs. The aim of this study is to investigate the effect of the single-chain variable fragment (scFv)-armed OVs targeting PD-1 on the TME, and ultimately overcome localized immunosuppression to sensitize tumors to immunotherapies. METHODS: A tumor-selective oncolytic herpes simplex virus vector was engineered to encode a humanized scFv against human PD-1 (hPD-1scFv) (YST-OVH). The antitumor efficacy of YST-OVH was explored in multiple therapeutic mouse models. The neurotoxicity and safety of YST-OVH were evaluated in nonhuman primates. The precise dynamics in the TME involved in YST-OVH treatment were dissected using cytometry by time-of-flight (CyTOF). RESULTS: The identified hPD-1scFv showed superior T-cell activating activity. Localized delivery of hPD-1scFv by YST-OVH promotes systemic antitumor immunity in humanized PD-1 mouse models of established cancer. Immune profiling of tumors using CyTOF revealed the enhanced antitumor effect of YST-OVH, which largely relied on CD8+ T cell activity by augmenting the tumor infiltration of effector CD8+ T cells and establishment of memory CD8+ T cells and reducing associated CD8+ T cell exhaustion. Furthermore, YST-OVH treatment modified the cancer-immune set point of tumors coupled to coexpression of CTLA-4 and TIM-3 on exhausted CD8+ T cells and high levels of CTLA-4+ Treg cells. A combination approach incorporating anti-CTLA-4 or anti-TIM-3 further improved efficacy by increasing tumor immunogenicity and activating antitumor adaptive immune responses. Moreover, this therapeutic strategy showed no neurotoxicity and was well tolerated in nonhuman primates. The benefit of intratumoral hPD-1scFv expression was also observed in humanized mice bearing human cancer cells. CONCLUSION: Localized delivery of PD-1 inhibitors by engineered YST-OVH was a highly effective and safe strategy for cancer immunotherapy. YST-OVH also synergized with CTLA-4 or TIM-3 blockade to enhance the immune response to cancer. These data provide a strong rationale for further clinical evaluation of this novel therapeutic approach.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Linfócitos T CD8-Positivos , Antígeno CTLA-4 , Linhagem Celular Tumoral , Modelos Animais de Doenças , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Inibidores de Checkpoint Imunológico , Imunidade , Camundongos , Receptor de Morte Celular Programada 1
3.
Antiviral Res ; 201: 105298, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35341808

RESUMO

Infections caused by herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) remain a serious global health issue, and the medical countermeasures available thus far are limited. Virus-neutralizing monoclonal antibodies (NAbs) are crucial tools for studying host-virus interactions and designing effective vaccines, and the discovery and development of these NAbs could be one approach to treat or prevent HSV infection. Here, we report the isolation of five HSV NAbs from mice immunized with both HSV-1 and HSV-2. Among these were two antibodies that potently cross-neutralized both HSV-1 and HSV-2 with the 50% virus-inhibitory concentrations (IC50) below 200 ng/ml, one of which (4A3) exhibited high potency against HSV-2, with an IC50 of 59.88 ng/ml. 4A3 neutralized HSV at the prebinding stage and prevented HSV infection and cell-to-cell spread. Significantly, administration of 4A3 completely prevented weight loss and improved survival of mice challenged with a lethal dose of HSV-2. Using structure-guided molecular modeling combined with alanine-scanning mutagenesis, we observed that 4A3 bound to a highly conserved continuous epitope (residues 216 to 220) within the receptor-binding domain of glycoprotein D (gD) that is essential for viral infection and the triggering of membrane fusion. Our results provide guidance for developing NAb drugs and vaccines against HSV.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Animais , Anticorpos Antivirais , Epitopos , Herpes Simples/tratamento farmacológico , Herpes Simples/prevenção & controle , Herpesvirus Humano 2 , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Envelope Viral/metabolismo
4.
Oxid Med Cell Longev ; 2020: 2067959, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685086

RESUMO

Upregulation of Brf1 (TFIIB-related factor 1) and Pol III gene (RNA polymerase III-dependent gene, such as tRNAs and 5S rRNA) activities is associated with cell transformation and tumor development. Alcohol intake causes liver injury, such as steatosis, inflammation, fibrosis, and cirrhosis, which enhances the risk of HCC development. However, the mechanism of alcohol-promoted HCC remains to be explored. We have designed the complementary research system, which is composed of cell lines, an animal model, human samples, and experiments in vivo and in vitro, to carry out this project by using molecular biological, biochemical, and cellular biological approaches. It is a unique system to explore the mechanism of alcohol-associated HCC. Our results indicate that alcohol upregulates Brf1 and Pol III gene (tRNAs and 5S rRNA) transcription in primary mouse hepatocytes, immortalized mouse hepatocyte-AML-12 cells, and engineered human HepG2-ADH cells. Alcohol activates MSK1 to upregulate expression of Brf1 and Pol III genes, while inhibiting MSK1 reduces transcription of Brf1 and Pol III genes in alcohol-treated cells. The inhibitor of MSK1, SB-747651A, decreases the rates of cell proliferation and colony formation. Alcohol feeding promotes liver tumor development of the mouse. These results, for the first time, show the identification of the alcohol-response promoter fragment of the Pol III gene key transcription factor, Brf1. Our studies demonstrate that Brf1 expression is elevated in HCC tumor tissues of mice and humans. Alcohol increases cellular levels of Brf1, resulting in enhancement of Pol III gene transcription in hepatocytes through MSK1. Our mechanism analysis has demonstrated that alcohol-caused high-response fragment of the Brf1 promoter is at p-382/+109bp. The MSK1 inhibitor SB-747651A is an effective reagent to repress alcohol-induced cell proliferation and colony formation, which is a potential pharmaceutical agent. Developing this inhibitor as a therapeutic approach will benefit alcohol-associated HCC patients.


Assuntos
Fator 1 de Resposta a Butirato/genética , Etanol/metabolismo , RNA de Transferência/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/uso terapêutico , Transcrição Gênica/efeitos dos fármacos , Animais , Proliferação de Células , Humanos , Camundongos , Proteínas Quinases S6 Ribossômicas 90-kDa/farmacologia , Transfecção , Regulação para Cima
5.
Cancer Immunol Res ; 8(5): 632-647, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32127389

RESUMO

Oncolytic virotherapy can lead to systemic antitumor immunity, but the therapeutic potential of oncolytic viruses in humans is limited due to their insufficient ability to overcome the immunosuppressive tumor microenvironment (TME). Here, we showed that locoregional oncolytic virotherapy upregulated the expression of PD-L1 in the TME, which was mediated by virus-induced type I and type II IFNs. To explore PD-1/PD-L1 signaling as a direct target in tumor tissue, we developed a novel immunotherapeutic herpes simplex virus (HSV), OVH-aMPD-1, that expressed a single-chain variable fragment (scFv) against PD-1 (aMPD-1 scFv). The virus was designed to locally deliver aMPD-1 scFv in the TME to achieve enhanced antitumor effects. This virus effectively modified the TME by releasing damage-associated molecular patterns, promoting antigen cross-presentation by dendritic cells, and enhancing the infiltration of activated T cells; these alterations resulted in antitumor T-cell activity that led to reduced tumor burdens in a liver cancer model. Compared with OVH, OVH-aMPD-1 promoted the infiltration of myeloid-derived suppressor cells (MDSC), resulting in significantly higher percentages of CD155+ granulocytic-MDSCs (G-MDSC) and monocytic-MDSCs (M-MDSC) in tumors. In combination with TIGIT blockade, this virus enhanced tumor-specific immune responses in mice with implanted subcutaneous tumors or invasive tumors. These findings highlighted that intratumoral immunomodulation with an OV expressing aMPD-1 scFv could be an effective stand-alone strategy to treat cancers or drive maximal efficacy of a combination therapy with other immune checkpoint inhibitors.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Herpesvirus Humano 1/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Receptores Imunológicos/antagonistas & inibidores , Anticorpos de Cadeia Única/farmacologia , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Imunomodulação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Oncoimmunology ; 9(1): 1726168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117591

RESUMO

Oncolytic viruses represent a promising therapeutic modality, but they have yet to live up to their therapeutic potential. Safety and efficacy concerns impel us to identify least toxic oncolytic agents that would generate durable and multifaceted anti-tumor immune responses to disrupt the tumors. Here we describe a rational engineered oncolytic herpes virus (OVH) that is a selective killer for targeting tumors, has strong safety records, induces complete regression of tumors in multiple tumor models, and elicits potent antitumor immunity. By far, the potential of OVs in promoting the tumor antigen-specific humoral immune responses remains obscure. In this study, we found that effective treatment by OVH induced immunogenic cell death, which facilitates to elicit humoral immune responses. Depletion experiments revealed that B cells were required for maximal antitumor efficacy of oncolytic immunotherapy. Both serum transfer and antibody treatment experiments revealed that endogenous oncolysis-induced antigen-targeting therapeutic antibodies can lead to systemic tumor regression. Our data demonstrate that tumor-targeting immune modulatory properties confer oncolytic OVH virotherapy as potent immunotherapeutic cancer vaccines that can generate specific and efficacious antitumor humoral responses by eliciting endogenous tumor antigen-targeting therapeutic antibodies in situ, resulting in an efficacious and tumor-specific therapeutic effect.


Assuntos
Vacinas Anticâncer , Terapia Viral Oncolítica , Vírus Oncolíticos , Antígenos de Neoplasias , Imunoterapia , Vírus Oncolíticos/genética
7.
Mol Ther Oncolytics ; 15: 153-165, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31720372

RESUMO

As a clinical setting in which novel treatment options are urgently needed, hepatocellular carcinoma (HCC) exhibits intriguing opportunities for oncolytic virotherapy. Here we report the rational generation of a novel herpes simplex virus type 1 (HSV-1)-based oncolytic vector for targeting HCC, named Ld0-GFP, which was derived from oncolytic ICP0-null virus (d0-GFP), had a fusogenic phenotype, and was a novel killer against HCC as well as other types of cancer cells. Compared with d0-GFP, Ld0-GFP exhibited superior cancer cell-killing ability in vitro and in vivo. Ld0-GFP targets a broad spectrum of HCC cells and can result in significantly enhanced immunogenic tumor cell death. Intratumoral and intravenous injections of Ld0-GFP showed effective antitumor capabilities in multiple tumor models, leading to increased survival. We speculated that more active cell-killing capability of oncolytic virus and enhanced immunogenic cell death may lead to better tumor regression. Additionally, Ld0-GFP had an improved safety profile, showing reduced neurovirulence and systemic toxicity. Ld0-GFP virotherapy could offer a potentially less toxic, more effective option for both local and systemic treatment of HCC. This approach also provides novel insights toward ongoing efforts to develop an optimal oncolytic vector for cancer therapy.

8.
Medicine (Baltimore) ; 98(4): e14051, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30681562

RESUMO

To evaluate the diagnostic efficacy and clinical value of contrast-enhanced ultrasonography (CEUS) plus TI-RADS classification in benign and malignant thyroid tumors compared with either method alone.The informed consent was signed all patients. A total of 370 patients with thyroid tumors of TI-RADS category 3 and 4 were recruited, with 432 thyroid nodules. They respectively received routine ultrasonography and CEUS. The nodules were reclassified according to CEUS scoring, and a combined diagnosis was made. The pathological results were taken as the gold standard. The sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV) and area under the ROC curve were calculated for the 3 diagnostic methods. The diagnostic efficacy was compared by using Student t test, Pearson chi-square (χ) test, McNemar chi-square (χ) test or Z test. Student t test and logistic regression were employed for comparing different imaging features of benign and malignant thyroid tumors on CEUS and risk analysis.Of 432 thyroid nodules, there were 258 malignant nodules (59.72%) and 174 benign ones (40.28%). By logistic regression, 6 suspicious features on CEUS were considered significant for differentiating malignant from benign tumors: slow entry of contrast agents during enhancement stage (OR = 15.610, P = .001), slow time to peak (OR = 7.416, P = .002), non-uniform enhancement (OR = 10.076, P = .023), enhancement pattern (irregular) (OR = 36.233, P = .002), enhancement boundary (unclear) (OR = 25.300, P = .012), and no ring-like enhancement (OR = 25.297, P = .004). CEUS plus TI-RADS classification showed a higher diagnostic efficacy for differentiating between benign and malignant thyroid tumors. The Se was 85.66% (0.806-0.896), Sp 83.33% (0.768-0.884), PPV 88.40% (0.836-0.919), NPV 79.67% (0.729-0.851), and AUC 0.867 ±â€Š0.019 (0.815-0.889). The above indicators were of statistical significance as compared with TI-RADS classification or CEUS alone (P <.05).CEUS can more clearly visualize microvascular distribution of the nodules and offers a new approach to diagnose benign and malignant thyroid tumors. TI-RADS classification plus CEUS is more accurate than TI-RADS classification alone. This combined approach is worthy of clinical popularization.


Assuntos
Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/patologia , Ultrassonografia/métodos , Adulto , Idoso , Meios de Contraste , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Sensibilidade e Especificidade , Método Simples-Cego , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/patologia , Adulto Jovem
9.
BMC Immunol ; 19(1): 35, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514214

RESUMO

BACKGROUND: Most monoclonal antibodies against mouse antigens have been derived from rat spleen-mouse myeloma fusions, which are valuable tools for purposes ranging from general laboratory reagents to therapeutic drugs, and yet selecting and expressing them remains a time-consuming and inefficient process. Here, we report a novel approach for the rapid high-throughput selection and expression of recombinant functional rat monoclonal antibodies with different isotypes. RESULTS: We have developed a robust system for generating rat monoclonal antibodies through several processes involving simultaneously immunizing rats with three different antigens expressing in a mixed cell pools, preparing hybridoma cell pools, in vitro screening and subsequent cloning of the rearranged light and heavy chains into a single expression plasmid using a highly efficient assembly method, which can decrease the time and effort required by multiple immunizations and fusions, traditional clonal selection and expression methods. Using this system, we successfully selected several rat monoclonal antibodies with different IgG isotypes specifically targeting the mouse PD-1, LAG-3 or AFP protein from a single fusion. We applied these recombinant anti-PD-1 monoclonal antibodies (32D6) in immunotherapy for therapeutic purposes that produced the expected results. CONCLUSIONS: This method can be used to facilitate an increased throughput of the entire process from multiplex immunization to acquisition of functional rat monoclonal antibodies and facilitate their expression and feasibility using a single plasmid.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Ensaios de Triagem em Larga Escala , Proteínas Recombinantes/isolamento & purificação , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/uso terapêutico , Células Cultivadas , Seleção Clonal Mediada por Antígeno , Feminino , Células HEK293 , Humanos , Imunização/métodos , Imunoterapia Ativa , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Ratos , Ratos Wistar , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA