Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(7): e0068623, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37367489

RESUMO

Foot-and-mouth disease (FMD) is an acute, highly contagious disease of cloven-hoofed animals caused by FMD virus (FMDV). Currently, the molecular pathogenesis of FMDV infection remains poorly understood. Here, we demonstrated that FMDV infection induced gasdermin E (GSDME)-mediated pyroptosis independent of caspase-3 activity. Further studies showed that FMDV 3Cpro cleaved porcine GSDME (pGSDME) at the Q271-G272 junction adjacent to the cleavage site (D268-A269) of porcine caspase-3 (pCASP3). The inhibition of enzyme activity of 3Cpro failed to cleave pGSDME and induce pyroptosis. Furthermore, overexpression of pCASP3 or 3Cpro-mediated cleavage fragment pGSDME-NT was sufficient to induce pyroptosis. Moreover, the knockdown of GSDME attenuated the pyroptosis caused by FMDV infection. Our study reveals a novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the pathogenesis of FMDV and the design of antiviral drugs. IMPORTANCE Although FMDV is an important virulent infectious disease virus, few reports have addressed its relationship with pyroptosis or pyroptosis factors, and most studies focus on the immune escape mechanism of FMDV. GSDME (DFNA5) was initially identified as being associated with deafness disorders. Accumulating evidence indicates that GSDME is a key executioner for pyroptosis. Here, we first demonstrate that pGSDME is a novel cleavage substrate of FMDV 3Cpro and can induce pyroptosis. Thus, this study reveals a previously unrecognized novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the design of anti-FMDV therapies and the mechanisms of pyroptosis induced by other picornavirus infections.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Suínos , Vírus da Febre Aftosa/metabolismo , Caspase 3/metabolismo , Cisteína Endopeptidases/metabolismo , Gasderminas , Piroptose , Proteínas Virais/metabolismo
2.
J Gen Virol ; 104(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36947577

RESUMO

Seneca Valley virus (SVV, also known as Senecavirus A), an oncolytic virus, is a nonenveloped, positive-strand RNA virus and the sole member of the genus Senecavirus within the family Picornaviridae. The mechanisms of SVV entry into cells are currently almost unknown. In the present study, we found that SVV entry into HEK293T cells is acidic pH-dependent by using ammonium chloride (NH4Cl) and chloroquine, both of which could inhibit SVV infection. We confirmed that dynamin II is required for SVV entry by using dynasore, silencing the dynamin II protein, or expressing the dominant-negative (DN) K44A mutant of dynamin II. Then, we discovered that chlorpromazine (CPZ) treatment or knockdown of the clathrin heavy chain (CLTC) protein significantly inhibited SVV infection. In addition, overexpression of CLTC promoted SVV infection. Caveolin-1 and membrane cholesterol were also required for SVV endocytosis. Notably, utilizing genistein, EIPA or nocodazole, we observed that macropinocytosis and microtubules are not involved in SVV entry. Furthermore, overexpression of the Rab7 and Rab9 proteins but not the Rab5 or Rab11 proteins promoted SVV infection. The findings were further validated by the knockdown of four Rabs and Lamp1 proteins, indicating that after internalization, SVV is transported from late endosomes to the trans-Golgi network (TGN) or lysosomes, respectively, eventually releasing its RNA into the cytosol from the lysosomes. Our findings concretely revealed SVV endocytosis mechanisms in HEK293T cells and provided an insightful theoretical foundation for further research into SVV oncolytic mechanisms.


Assuntos
Dinamina II , Picornaviridae , Humanos , Células HEK293 , Endocitose , Endossomos , Lisossomos , Internalização do Vírus
3.
Viruses ; 13(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34960713

RESUMO

Congenital tremor (CT) type A-II in piglets is caused by an emerging atypical porcine pestivirus (APPV), which is prevalent in swine herds and a serious threat to the pig production industry. This study aimed to construct APPV E2 subunit vaccines fused with Fc fragments and evaluate their immunogenicity in piglets. Here, APPV E2Fc and E2ΔFc fusion proteins expressed in Drosophila Schneider 2 (S2) cells were demonstrated to form stable dimers in SDS-PAGE and western blotting assays. Functional analysis revealed that aE2Fc and aE2ΔFc fusion proteins could bind to FcγRI on antigen-presenting cells (APCs), with the affinity of aE2Fc to FcγRI being higher than that of aE2ΔFc. Moreover, subunit vaccines based on aE2, aE2Fc, and aE2ΔFc fusion proteins were prepared, and their immunogenicity was evaluated in piglets. The results showed that the Fc fusion proteins emulsified with the ISA 201VG adjuvant elicited stronger humoral and cellular immune responses than the IMS 1313VG adjuvant. These findings suggest that APPV E2 subunit vaccines fused with Fc fragments may be a promising vaccine candidate against APPV.


Assuntos
Imunidade Celular , Imunidade Humoral , Pestivirus/imunologia , Suínos/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Linhagem Celular , Imunogenicidade da Vacina , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Ativação Linfocitária , Infecções por Pestivirus/imunologia , Infecções por Pestivirus/veterinária , Multimerização Proteica , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Células Th2/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/imunologia , Proteínas Estruturais Virais/metabolismo
4.
Front Plant Sci ; 12: 731834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630480

RESUMO

Root systems are instrumental for water and nutrient uptake and the anchorage of plants in the soil. Root regulating GL2-interacting repressors (GIRs) contain a Short RING-like Zinc-Finger (SRNF) domain, but there has been no comprehensive characterization about this gene family in any plant species. Here, we renamed the GIR-like proteins as SRNF proteins due to their conserved domain and identified 140 SRNF genes from 16 plant species including 24 GhSRNF genes in Gossypium hirsutum. Phylogenetic analysis of the SRNFs revealed both similarities and divergences between five subfamilies. Notably, synteny analysis revealed that polyploidization and whole-genome duplication contribute to the expansion of the GhSRNF gene family. Various cis-acting regulatory elements were shown to be pertinent to light, phytohormone, defense responsive, and meristem regulation. Furthermore, GhSRNF2/15 were predominantly expressed in root, whereas the expression of GhSRNF18 is positively correlated with the primary root (PR) length in G. hirsutum, quantified by quantitative real-time PCR (qRT-PCR). Over-expression of GhSRNF18 in Arabidopsis and virus-induced gene silencing (VIGS) of GhSRNF18 in G. hirsutum has revealed the role of GhSRNF18 in PR growth. The over-expression of GhSRNF18 in Arabidopsis resulted in an increase of meristematic activities and auxin accumulations in PRs, which were consistent with the transcriptomic data. Our results suggested that GhSRNF18 positively regulates PR growth. This study increased our understanding of the SRNF gene family in plants and provided a novel rationale for the further investigation of cotton root morphogenesis regulated by the GhSRNFs.

5.
Vaccine ; 38(29): 4574-4583, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32417139

RESUMO

Classical swine fever (CSF) remains one of the most important highly contagious and fatal viral disease of swine with high morbidity and mortality. CSF is caused by classical swine fever virus (CSFV), a small, enveloped RNA virus of the genus Pestivirus. The aim of this study was to construct the a novel CSFV Fc-fusion recombinant protein and evaluate the efficacy as a vaccine against CSFV. Here, we obtained a novel subunit vaccine expressing CSFV E2 recombinant fusion protein in CHO-S cells. Functional analysis revealed that CSFV Fc-fusion recombinant protein (CSFV-E2-Fc) could bind to FcγRI on antigen-presenting cells (APCs) and significantly increase IgA levels in serum and feces, inducing stronger mucosal immune response in swine. Additionally, CSFV-E2-Fc immunization enhanced CSFV-specific T cell immune response with a Th1-like pattern of cytokine secretion, remarkably stimulated the Th1-biased cellular immune response and humoral immune response. Further, the protective effects of CSFV-E2-Fc subunit vaccines were confirmed. The data suggest that CSFV E2-Fc recombinant fusion protein may be a promising candidate subunit vaccine to elicit immune response and protect against CSFV.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Vacinas Virais , Animais , Anticorpos Antivirais , Peste Suína Clássica/prevenção & controle , Antígenos de Histocompatibilidade Classe I , Receptores Fc , Suínos , Vacinação , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA