Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncology ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527441

RESUMO

BACKGROUND: There remains a lack of studies addressing the stromal background and fibrosis features and its prognostic value in liver cancer. qFibrosis can identify, quantify and visualize the fibrosis features from biopsy samples. In this study, we aim to demonstrate the prognostic value of histological features by using qFibrosis analysis in liver cancer patients. METHODS: Liver specimen from 201 patients with hepatocellular carcinoma underwent curative resection were imaged and assessed using qFibrosis system, and generated a total of 33 and 156 collagen parameters from tumor part and non-tumor liver tissue, respectively. We used these collagen parameters on patients to build two combined indexes, RFS-index and OS-index, in order to differentiate patients with early recurrence and early death, respectively. The models were validated using leave-one-out method. RESULTS: Both combined indexes had significant prediction value of patients' outcome. The RFS-index of 0.52 well differentiates patients with early recurrence (p < 0.001), and the OS-index of 0.73 well differentiates patients with early death during follow-up (p = 0.02). CONCLUSIONS: Combined index calculated with qFibrosis from digital readout of fibrotic status of peri-tumor liver specimen in patients with HCC have prediction values for their disease and survival outcomes. These results demonstrated the potentials to transform histopathological features into quantifiable data that could be used to correlate with clinical outcome.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35873630

RESUMO

Background: Hepatitis C virus (HCV) is a common cause of progressive hepatic fibrosis, cirrhosis, and hepatocellular carcinoma worldwide. Despite the availability of effective direct-acting antivirals, patients often have significant hepatic fibrosis at the time of diagnosis due to delay in diagnosis and comorbidities which promote fibrogenesis. Thus, antifibrotic agents represent an attractive adjunctive therapy. Fuzheng Huayu (FZHY), a traditional Chinese medicine botanical formulation, has been used as an antifibrotic agent in chronic HBV infection. Our aim was to assess FZHY in patients with HCV infection and active viremia. Method: We randomized 118 patients with active viremia from 8 liver centers in the U.S. to receive oral FZHY (n = 59) or placebo (n = 59) for 48 weeks. Efficacy was assessed by histopathologic changes at the end of therapy. A subset of biopsies was further analyzed using qFibrosis to detect subtle changes in fibrosis in different zones of the hepatic lobules. Results: FZHY was well tolerated and safe. Patients with baseline Ishak fibrosis stages F3 and F4 had better response rates to FZHY than patients with baseline F0-F2 (p=0.03). qFibrosis zonal analysis showed significant improvement in fibrosis in all zones in patients with regression of the fibrosis stage. Conclusions: FZHY produced antifibrotic effects in patients with baseline Ishak F3 and F4 fibrosis stages. Reduction in fibrosis severity was zonal and correlated with the severity of inflammation. Based on its tolerability, safety, and efficacy, FZHY should be further investigated as a therapy in chronic liver diseases because of its dual anti-inflammatory and antiibrotic properties. Lay Summary. This is the first US-based, multicenter and placebo-controlled clinical trial that shows statistically significant reduction in fibrosis in patients with active HCV using an antifibrotic botanical formula. This has important implications as there is an immediate need for effective antifibrotic agents in treating many chronic diseases including NASH that lead to scarring of the liver. With artificial intelligence-based methodology, qFibrosis, we may provide a more reliable way to assess the FZHY as a therapy in chronic liver diseases because of its dual anti-inflammatory and antifibrotic properties.

3.
J Hepatol ; 77(5): 1399-1409, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35779659

RESUMO

BACKGROUND & AIMS: Liver fibrosis is a key prognostic determinant for clinical outcomes in non-alcoholic steatohepatitis (NASH). Current scoring systems have limitations, especially in assessing fibrosis regression. Second harmonic generation/two-photon excitation fluorescence (SHG/TPEF) microscopy with artificial intelligence analyses provides standardized evaluation of NASH features, especially liver fibrosis and collagen fiber quantitation on a continuous scale. This approach was applied to gain in-depth understanding of fibrosis dynamics after treatment with tropifexor (TXR), a non-bile acid farnesoid X receptor agonist in patients participating in the FLIGHT-FXR study (NCT02855164). METHOD: Unstained sections from 198 liver biopsies (paired: baseline and end-of-treatment) from 99 patients with NASH (fibrosis stage F2 or F3) who received placebo (n = 34), TXR 140 µg (n = 37), or TXR 200 µg (n = 28) for 48 weeks were examined. Liver fibrosis (qFibrosis®), hepatic fat (qSteatosis®), and ballooned hepatocytes (qBallooning®) were quantitated using SHG/TPEF microscopy. Changes in septa morphology, collagen fiber parameters, and zonal distribution within liver lobules were also quantitatively assessed. RESULTS: Digital analyses revealed treatment-associated reductions in overall liver fibrosis (qFibrosis®), unlike conventional microscopy, as well as marked regression in perisinusoidal fibrosis in patients who had either F2 or F3 fibrosis at baseline. Concomitant zonal quantitation of fibrosis and steatosis revealed that patients with greater qSteatosis reduction also have the greatest reduction in perisinusoidal fibrosis. Regressive changes in septa morphology and reduction in septa parameters were observed almost exclusively in F3 patients, who were adjudged as 'unchanged' with conventional scoring. CONCLUSION: Fibrosis regression following hepatic fat reduction occurs initially in the perisinusoidal regions, around areas of steatosis reduction. Digital pathology provides new insights into treatment-induced fibrosis regression in NASH, which are not captured by current staging systems. LAY SUMMARY: The degree of liver fibrosis (tissue scarring) in non-alcoholic steatohepatitis (NASH) is the main predictor of negative clinical outcomes. Accurate assessment of the quantity and architecture of liver fibrosis is fundamental for patient enrolment in NASH clinical trials and for determining treatment efficacy. Using digital microscopy with artificial intelligence analyses, the present study demonstrates that this novel approach has greater sensitivity in demonstrating treatment-induced reversal of fibrosis in the liver than current systems. Furthermore, additional details are obtained regarding the pathogenesis of NASH disease and the effects of therapy.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Inteligência Artificial , Biópsia , Colágeno , Fibrose , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Estudos Clínicos como Assunto
4.
Front Med (Lausanne) ; 9: 925357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833109

RESUMO

Background: The evolution of pediatric non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH) is associated with unique histological features. Pathological evaluation of liver specimen is often hindered by observer variability and diagnostic consensus is not always attainable. We investigated whether the qFIBS technique derived from adult NASH could be applied to pediatric NASH. Materials and Methods: 102 pediatric patients (<18 years old) with liver biopsy-proven NASH were included. The liver biopsies were serially sectioned for hematoxylin-eosin and Masson trichrome staining for histological scoring, and for second harmonic generation (SHG) imaging. qFIBS-automated measure of fibrosis, inflammation, hepatocyte ballooning, and steatosis was estabilshed by using the NASH CRN scoring system as the reference standard. Results: qFIBS showed the best correlation with steatosis (r = 0.84, P < 0.001); with ability to distinguish different grades of steatosis (AUROCs 0.90 and 0.98, sensitivity 0.71 and 0.93, and specificity 0.90 and 0.90). qFIBS correlation with fibrosis (r = 0.72, P < 0.001) was good with high AUROC values [qFibrosis (AUC) > 0.85 (0.85-0.95)] and ability to distinguish different stages of fibrosis. qFIBS showed weak correlation with ballooning (r = 0.38, P = 0.028) and inflammation (r = 0.46, P = 0.005); however, it could distinguish different grades of ballooning (AUROCs 0.73, sensitivity 0.36, and specificity 0.92) and inflammation (AUROCs 0.77, sensitivity 0.83, and specificity 0.53). Conclusion: It was demonstrated that when qFIBS derived from adult NASH was performed on pediatric NASH, it could best distinguish the various histological grades of steatosis and fibrosis.

5.
J Hepatol ; 76(5): 1030-1041, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35090960

RESUMO

BACKGROUND & AIMS: Histologically assessed hepatocyte ballooning is a key feature discriminating non-alcoholic steatohepatitis (NASH) from steatosis (NAFL). Reliable identification underpins patient inclusion in clinical trials and serves as a key regulatory-approved surrogate endpoint for drug efficacy. High inter/intra-observer variation in ballooning measured using the NASH CRN semi-quantitative score has been reported yet no actionable solutions have been proposed. METHODS: A focused evaluation of hepatocyte ballooning recognition was conducted. Digitized slides were evaluated by 9 internationally recognized expert liver pathologists on 2 separate occasions: each pathologist independently marked every ballooned hepatocyte and later provided an overall non-NASH NAFL/NASH assessment. Interobserver variation was assessed and a 'concordance atlas' of ballooned hepatocytes generated to train second harmonic generation/two-photon excitation fluorescence imaging-based artificial intelligence (AI). RESULTS: The Fleiss kappa statistic for overall interobserver agreement for presence/absence of ballooning was 0.197 (95% CI 0.094-0.300), rising to 0.362 (0.258-0.465) with a ≥5-cell threshold. However, the intraclass correlation coefficient for consistency was higher (0.718 [0.511-0.900]), indicating 'moderate' agreement on ballooning burden. 133 ballooned cells were identified using a ≥5/9 majority to train AI ballooning detection (AI-pathologist pairwise concordance 19-42%, comparable to inter-pathologist pairwise concordance of between 8-75%). AI quantified change in ballooned cell burden in response to therapy in a separate slide set. CONCLUSIONS: The substantial divergence in hepatocyte ballooning identified amongst expert hepatopathologists suggests that ballooning is a spectrum, too subjective for its presence or complete absence to be unequivocally determined as a trial endpoint. A concordance atlas may be used to train AI assistive technologies to reproducibly quantify ballooned hepatocytes that standardize assessment of therapeutic efficacy. This atlas serves as a reference standard for ongoing work to refine how ballooning is classified by both pathologists and AI. LAY SUMMARY: For the first time, we show that, even amongst expert hepatopathologists, there is poor agreement regarding the number of ballooned hepatocytes seen on the same digitized histology images. This has important implications as the presence of ballooning is needed to establish the diagnosis of non-alcoholic steatohepatitis (NASH), and its unequivocal absence is one of the key requirements to show 'NASH resolution' to support drug efficacy in clinical trials. Artificial intelligence-based approaches may provide a more reliable way to assess the range of injury recorded as "hepatocyte ballooning".


Assuntos
Hepatopatia Gordurosa não Alcoólica , Inteligência Artificial , Biópsia/métodos , Hepatócitos/patologia , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia
6.
Diagnostics (Basel) ; 10(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872090

RESUMO

BACKGROUND: Many clinical trials with potential drug treatment options for non-alcoholic fatty liver disease (NAFLD) are focused on patients with non-alcoholic steatohepatitis (NASH) stages 2 and 3 fibrosis. As the histological features differentiating stage 1 (F1) from stage 2 (F2) NASH fibrosis are subtle, some patients may be wrongly staged by the in-house pathologist and miss the opportunity for enrollment into clinical trials. We hypothesized that our refined artificial intelligence (AI)-based algorithm (qFibrosis) can identify these subtle differences and serve as an assistive tool for in-house pathologists. METHODS: Liver tissue from 160 adult patients with biopsy-proven NASH from Singapore General Hospital (SGH) and Peking University People's Hospital (PKUH) were used. A consensus read by two expert hepatopathologists was organized. The refined qFibrosis algorithm incorporated the creation of a periportal region that allowed for the increased detection of periportal fibrosis. Consequently, an additional 28 periportal parameters were added, and 28 pre-existing perisinusoidal parameters had altered definitions. RESULTS: Twenty-eight parameters (20 periportal and 8 perisinusoidal) were significantly different between the F1 and F2 cases that prompted a change of stage after a careful consensus read. The discriminatory ability of these parameters was further demonstrated in a comparison between the true F1 and true F2 cases as 26 out of the 28 parameters showed significant differences. These 26 parameters constitute a novel sub-algorithm that could accurately stratify F1 and F2 cases. CONCLUSION: The refined qFibrosis algorithm incorporated 26 novel parameters that showed a good discriminatory ability for NASH fibrosis stage 1 and 2 cases, representing an invaluable assistive tool for in-house pathologists when screening patients for NASH clinical trials.

7.
Hepatol Int ; 13(4): 501-509, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31187402

RESUMO

BACKGROUND AND AIMS: Sampling size variability of liver biopsy remains a major limitation in the assessment of liver fibrosis. We aimed to evaluate the diagnostic value of a fully quantitative method (second harmonic generation/two-photon excitation fluorescence, SHG/TPEF based) in "short" liver biopsy samples. METHODS: Liver biopsy samples from chronic hepatitis B (CHB) patients were constructed into "virtual" biopsies with different lengths. The original and "virtual" samples were measured by SHG/TPEF-based technology to obtain qFibrosis score, respectively. Here, ΔqFibrosis was defined as difference of qFibrosis between original biopsy and "virtual" biopsy. Equivalence test was used to compare ΔqFibrosis with the clinically acceptable error (deviation of 0.50) in each group. RESULTS: In real-world practice, qFibrosis score increased significantly with fibrosis progression in ≥ 1.5-cm-, 1.0-1.5-cm-, and 0.5-1.0-cm-long specimens (p < 0.05), compared with ≤ 0.5-cm-long specimens (p > 0.05). In virtual biopsy samples with specified length, the equivalence was confirmed in 0.5-1.0-cm- and 1.0-1.5-cm-long specimens (0.27 vs. 0.22, p < 0.001), whereas not in ≤ 0.5-cm-long specimens (0.53, p > 0.05). The number of cross-linked collagen fibers, the total and aggregated collagen proportionate area, and the collagen strings in number, length, width and perimeter showed excellent consistency with original biopsy samples in 0.5-1.0-cm- and 1.0-1.5-cm-long specimens (ICC > 0.90). CONCLUSIONS: The use of SHG/TPEF-based image technology may give useful suggestive information in evaluation of CHB-related liver fibrosis for the short sample (biopsy length > 0.5 cm).


Assuntos
Cirrose Hepática/patologia , Adolescente , Adulto , Idoso , Biópsia por Agulha/normas , Humanos , Aumento da Imagem , Microscopia de Fluorescência , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA