Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301225, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279586

RESUMO

Aluminum-oxygen batteries (AOBs) own the benefits of high energy density (8.14 kWh kg-1 ), low cost, and high safety. However, the design of a cathode with high surface area, structure integrity, and good catalytic performance is still challenging for rechargeable AOBs. Herein, the fabrication of a robust self-supporting cathode using 3D graphene aerogel (3DGA) for rechargeable AOBs is demonstrated. Electroanalysis showed that the 3DGA presented good catalytic activity in both oxygen reduction and evolution reactions, which allowed the AOB to operate for >90 cycles with low overpotentials at a current density of 0.2 mA cm-2 , and a high Coulombic efficiency of ca. 99% using ionic liquid as electrolyte. In comparison, the cell with the carbon paper cathode can only cycle for 50 rounds. The excellent cyclic performance can be attributed to the porous structure, large surface area, good electric conductivity, and catalytic activity of the 3DGA, which is prospective to be applied for other metal-air batteries, fuel cells, and supercapacitors.

2.
Inorg Chem ; 60(12): 8742-8753, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34086448

RESUMO

The discovery of the (Li1-xFexOH)FeSe superconductor has aroused significant interest in metal hydroxide-intercalated iron chalcogenides. However, all efforts made to intercalate NaOH between FeSe and FeS layers have failed so far. Here we report two NaOH-intercalated iron chalcogenides (Na1-xOH)Fe1-yX (X = Se, S) that were synthesized by a low-temperature hydrothermal ion-exchange method. Their crystal structures were solved through single-crystal X-ray diffraction and refined against powder X-ray and neutron diffraction data. Different from the (Li1-xFexOH)FeX superconductors that crystallize in a tetragonal space group P4/nmm with Z = 2, (Na1-xOH)Fe1-yX belong to an orthorhombic space group Cmma with Z = 4. The structural solution also reveals that there are vacancies in both Na and Fe sites and there are not iron ions in the (Na1-xOH) layer. This is probably why both Fe(II) and Fe(III) species exist in the title compounds, as detected by X-ray photoelectron spectroscopy. Based on magnetization and electrical resistivity measurements, the two compounds were found to be paramagnetic semiconductors. The absence of superconductivity should be closely related to the iron vacancies in the Fe1-yX layer. Theoretical calculations suggest that inducing superconductivity in (Na1-xOH)Fe1-ySe is promising due to the similarity of the electronic structures between stoichiometric (NaOH)FeSe and the (Li1-xFexOH)FeSe superconductor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA