Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Am Coll Surg ; 238(4): 436-447, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38214445

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cells targeting the B-cell antigen CD19 are standard therapy for relapsed or refractory B-cell lymphoma and leukemia. CAR T cell therapy in solid tumors is limited due to an immunosuppressive tumor microenvironment and a lack of tumor-restricted antigens. We recently engineered an oncolytic virus (CF33) with high solid tumor affinity and specificity to deliver a nonsignaling truncated CD19 antigen (CD19t), allowing targeting by CD19-CAR T cells. Here, we tested this combination against pancreatic cancer. STUDY DESIGN: We engineered CF33 to express a CD19t (CF33-CD19t) target. Flow cytometry and ELISA were performed to quantify CD19t expression, immune activation, and killing by virus and CD19-CAR T cells against various pancreatic tumor cells. Subcutaneous pancreatic human xenograft tumor models were treated with virus, CAR T cells, or virus+CAR T cells. RESULTS: In vitro, CF33-CD19t infection of tumor cells resulted in >90% CD19t cell-surface expression. Coculturing CD19-CAR T cells with infected cells resulted in interleukin-2 and interferon gamma secretion, upregulation of T-cell activation markers, and synergistic cell killing. Combination therapy of virus+CAR T cells caused significant tumor regression (day 13): control (n = 16, 485 ± 20 mm 3 ), virus alone (n = 20, 254 ± 23 mm 3 , p = 0.0001), CAR T cells alone (n = 18, 466 ± 25 mm 3 , p = NS), and virus+CAR T cells (n = 16, 128 ± 14 mm 3 , p < 0.0001 vs control; p = 0.0003 vs virus). CONCLUSIONS: Engineered CF33-CD19t effectively infects and expresses CD19t in pancreatic tumors, triggering cell killing and increased immunogenic response by CD19-CAR T cells. Notably, CF33-CD19t can turn cold immunologic tumors hot, enabling solid tumors to be targetable by agents designed against liquid tumor antigens.


Assuntos
Vírus Oncolíticos , Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Vírus Oncolíticos/genética , Vírus Oncolíticos/metabolismo , Linfócitos T/metabolismo , Linfócitos T/transplante , Antígenos CD19/metabolismo , Neoplasias Pancreáticas/terapia , Microambiente Tumoral
2.
ACS Biomater Sci Eng ; 8(7): 3107-3121, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35678715

RESUMO

In tumors, the metabolic demand of cancer cells often outpaces oxygen supply, resulting in a gradient of tumor hypoxia accompanied with heterogeneous resistance to cancer therapeutics. Models recapitulating tumor hypoxia are therefore essential for developing more effective cancer therapeutics. Existing in vitro models often fail to capture the spatial heterogeneity of tumor hypoxia or involve high-cost, complex fabrication/handling techniques. Here, we designed a highly tunable microfluidic device that induces hypoxia through natural cell metabolism and oxygen diffusion barriers. We adopted a cleanroom-free, micromilling-replica-molding strategy and a microfluidic liquid-pinning approach to streamline the fabrication and tumor model establishment. We also implemented a thin-film oxygen diffusion barrier design, which was optimized through COMSOL simulation, to support both two-dimensional (2-D) and three-dimensional (3-D) hypoxic models. We demonstrated that liquid-pinning enables an easy, injection-based micropatterning of cancer cells of a wide range of parameters, showing the high tunability of our design. Human breast cancer and prostate cancer cells were seeded and stained after 24 h of 2-D and 3-D culture to validate the natural induction of hypoxia. We further demonstrated the feasibility of the parallel microfluidic channel design to evaluate dual therapeutic conditions in the same device. Overall, our new microfluidic tumor model serves as a user-friendly, cost-effective, and highly scalable platform that provides spatiotemporal analysis of the hypoxic tumor microenvironments suitable for high-content biological studies and therapeutic discoveries.


Assuntos
Neoplasias da Mama , Técnicas Analíticas Microfluídicas , Humanos , Hipóxia , Masculino , Técnicas Analíticas Microfluídicas/métodos , Microfluídica , Oxigênio/metabolismo , Hipóxia Tumoral , Microambiente Tumoral
3.
Front Chem ; 9: 620589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968893

RESUMO

"Diversity-enhanced extracts" is an effective method of producing chemical libraries for the purpose of drug discovery. Three rare new cytochalasan derivative chaetoglobosins B1-B3 (1-3) were obtained from chemically engineered crude broth extracts of Chaetomium madrasense 375 prepared by reacting with hydrazine monohydrate and four known metabolite chaetoglobosins (4-7) were also identified from the fungus. The structures were identified by NMR and MS analysis and electronic circular dichroism simulation. In addition, the antiproliferative activities of these compounds were also evaluated, and the drug-resistant activities of cytochalasans were evaluated for the first time. Compound 6 possessed potent activity against four human cancer cells (A549, HCC827, SW620, and MDA-MB-231), and two drug-resistant HCC827 cells (Gefitinib-resistant, Osimertinib-resistant) compared with the positive controls.

4.
Curr Issues Mol Biol ; 21: 21-40, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27033743

RESUMO

Preventing pathogen transmission to a new host is of major interest to the immunologist and could benefit from a detailed investigation of pathogen immune evasion strategies. The first line of defense against pathogen invasion is provided by macrophages. When they sense pathogens, macrophages initiate signals to inflammatory and pro-inflammatory cytokines through pattern recognition receptors (PRRs) subsequently mediating phagocytosis and inflammation. The macrophage immune machinery classically includes two subsets: the activated M1 and the activated M2 that respond accordingly in diverse immune challenges. The lipid and glycogen metabolic pathways work together with the lysosome to help the mature phagosome to degrade and eliminate intracellular pathogens in macrophages. The viral evasion strategies are even more complex due to the interplay between autophagy and apoptosis. However, pathogens evolve several strategies to camouflage themselves against immune responses in order to ensure their survival, replication and transmission. These strategies include the muting of PRRs initiated inflammatory responses, attenuation of M1 and/or induction of M2 macrophages, suppression of autophago-lysosomal formation, interference with lipid and glycogen metabolism, and viral mediation of autophagy and apoptosis cross-talk to enhance viral replication. This review focuses on pathogen immune evasion methods and on the strategies used by the host against camouflaged pathogens.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Evasão da Resposta Imune , Macrófagos/imunologia , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Humanos , Macrófagos/microbiologia , Macrófagos/virologia , Fagossomos/fisiologia , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo
5.
DNA Cell Biol ; 35(9): 489-97, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27314873

RESUMO

Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) that emerged from classic PRRSV causes more severe damage to the swine industry. The earlier reports indicating inhibition of interferon-ß (IFN-ß) expression by PRRSV through total blockage of IFN-regulatory factor 3 (IRF3) nuclear translocation made us investigate the mechanism of IFN-ß expression in HP-PRRSV infection. For this purpose, the IRF3 nuclear translocation in the control group [Poly (I:C)] and test group [Poly (I:C)+HP-PRRSV] was detected by immunofluorescence, and the results showed that IRF3 nuclear translocation in cells with PRRSV was weaker than cells without PRRSV, which was different from the previous study. In addition, the IFN-ß mRNA and protein expression was observed to be inhibited by HP-PRRSV along with decreased IRF3 mRNA and total protein, and IRF3 nuclear translocation of test group was suppressed in MARC-145 and porcine alveolar macrophage cells in comparison with the control group. The quantity of phosphorylated IRF3 protein was also reduced after HP-PRRSV infection. However, CREB-binding protein (CBP) expression did not change between the control and test group. These results indicate that the inhibition of IFN-ß expression is mainly due to the quantitative change in the amount of phosphorylated IRF3 in the cytoplasm, but not dependent on the complete blockage of IRF3 nuclear translocation or the restraining of CBP expression in the nucleus by HP-PRRSV.


Assuntos
Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Fator Regulador 3 de Interferon/genética , Interferon beta/genética , Macrófagos Alveolares/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/imunologia , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Chlorocebus aethiops , Citosol/metabolismo , Citosol/virologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Regulação da Expressão Gênica , Fator Regulador 3 de Interferon/imunologia , Interferon beta/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Fosforilação/efeitos dos fármacos , Poli I-C/farmacologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Transdução de Sinais , Suínos
6.
Sci Rep ; 6: 24964, 2016 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-27102525

RESUMO

The molecular regulatory mechanisms of host responses to Mycobacterium avium subsp. paratuberculosis (MAP) infection during the early subclinical stage are still not clear. In this study, surgically isolated ileal segments in newborn calves (n = 5) were used to establish in vivo MAP infection adjacent to an uninfected control intestinal compartment. RNA-Seq was used to profile the whole transcriptome (mRNAs) and the microRNAome (miRNAs) of ileal tissues collected at one-month post-infection. The most related function of the differentially expressed mRNAs between infected and uninfected tissues was "proliferation of endothelial cells", indicating that MAP infection may lead to the over-proliferation of endothelial cells. In addition, 46.2% of detected mRNAs displayed alternative splicing events. The pre-mRNA of two genes related to macrophage maturation (monocyte to macrophage differentiation-associated) and lysosome function (adenosine deaminase) showed differential alternative splicing events, suggesting that specific changes in the pre-mRNA splicing sites may be a mechanism by which MAP escapes host immune responses. Moreover, 9 miRNAs were differentially expressed after MAP infection. The integrated analysis of microRNAome and transcriptome revealed that these miRNAs might regulate host responses to MAP infection, such as "proliferation of endothelial cells" (bta-miR-196 b), "bacteria recognition" (bta-miR-146 b), and "regulation of the inflammatory response" (bta-miR-146 b).


Assuntos
Interações Hospedeiro-Patógeno , Íleo/patologia , MicroRNAs/análise , Mycobacterium avium subsp. paratuberculosis/crescimento & desenvolvimento , Paratuberculose/patologia , Precursores de RNA/metabolismo , Splicing de RNA , Animais , Bovinos , Proliferação de Células , Células Endoteliais/patologia , Perfilação da Expressão Gênica , Evasão da Resposta Imune
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA