Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 223: 109196, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35872179

RESUMO

Heparanase (HPSE) and vascular endothelial growth factor (VEGF) are believed to play a vital role in hypoxia-induced retinal neovascularization (RNV). HPSE is a target gene of miR-429. Our study aimed to investigate the effect of the miR-429-HPSE-VEGF pathway on hypoxia-induced RNV. The gene and protein expression of miR-429, HPSE and VEGF in human retinal endothelial cells and retinas was determined by real-time PCR and Western blot assays. The effects of miR-429 on human retinal endothelial cells and retinal neovascularization under hypoxia condition were verified by in vitro and in vivo experiments. First, we studied the effect of the miR-429-HPSE-VEGF pathway in HRECs under hypoxic conditions. HREC functions such as migration and tube formation were enhanced under hypoxic conditions. Overexpression of miR-429 in HRECs reversed these changes. Then, we investigated the effect of miR-429 on hypoxia-induced RNV in vivo. When miR-429 agomirs were injected into the vitreous cavity of mice with oxygen-induced retinopathy to overexpress miR-429, the mRNA and protein expression of VEGF was significantly reduced. In addition, indicators of retinal neovascularization, such as the retinal avascular area, and morphology of vessels, were reduced significantly in the miR-429 overexpression group. In this study, our data showed that miR-429 plays an important role by inhibiting the HPSE-VEGF pathway in hypoxia-induced retinopathy.


Assuntos
MicroRNAs , Doenças Retinianas , Neovascularização Retiniana , Animais , Células Endoteliais/metabolismo , Glucuronidase , Humanos , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Oxigênio/metabolismo , RNA Mensageiro/metabolismo , Doenças Retinianas/metabolismo , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
J Anal Methods Chem ; 2019: 8192439, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30719374

RESUMO

To improve essential oil quality, especially to reserve the thermal instability of compounds, supercritical CO2 extraction (SFE) was applied to recover essential oil from Cymbopogon citronella leaves. A response surface methodology was applied to optimize the extraction process. The highest essential oil yield was predicted at extraction time 120 min, extraction pressure 25 MPa, extraction temperature 35°C, and CO2 flow 18 L/h for the SFE processing. Under these experimental conditions, the mean essential oil yield is 4.40%. In addition, the chemical compositions of SFE were compared with those obtained by hydrodistillation extraction (HD). There were 41 compounds obtained of SFE, while 35 compounds of HD. Alcohols and aldehydes were the main compositions in the essential oils. Furthermore, the antioxidant activities and antimicrobial of essential oils obtained by HD and the evaluated condition of SFE were compared. Results showed that the antioxidant activities of SFE oil are better than those of HD. Minimum inhibitory concentrations (MICs) were determined by the microdilution method. Essential oil obtained from SFE and HD exhibited a significant antimicrobial activity against all tested microorganisms. It is confirmed that the SFE method can be an alternative processing method to extract essential oils from Cymbopogon citronella leaves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA