Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 359: 142276, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761830

RESUMO

The production of solid wastes in the metallurgical industry has significant implications for land resources and environmental pollution. To address this issue, it is crucial to explore the potential of recycling these solid wastes to reduce land occupation while protecting the environment and promoting resource utilization. Steel slag, red mud, copper slag and steel picking waste liquor are examples of solid wastes generated during the metallurgical process that possess high iron content and Fe species, making them excellent catalysts for persulfate-based advanced oxidation processes (PS-AOPs). This review elucidates the catalytic mechanisms and pathways of Fe2+ and Fe0 in the activation PS. Additionally, it underscores the potential of metallurgical iron-containing solid waste (MISW) as a catalyst for PS activation, offering a viable strategy for its high-value utilization. Lastly, the article provides an outlook towards future challenges and prospects for MISW in PS activation for the degradation of organic pollutants.


Assuntos
Ferro , Resíduos Sólidos , Ferro/química , Catálise , Oxirredução , Metalurgia , Sulfatos/química , Poluentes Ambientais/química , Reciclagem/métodos , Poluição Ambiental/prevenção & controle
2.
Environ Sci Pollut Res Int ; 30(31): 77905-77916, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37266784

RESUMO

The comprehensive utilization of iron ore tailings (IOTs) not only resolved environmental problems but also brought huge economic benefits. In this study, the synthetic route presented herein provides a novel method for the synthesis of ZSM-5 microspheres from IOTs. The effects of Si/Al molar ratios and the pH of the precursor solution on the formation of zeolite was evaluated by various analytical methods. The catalytic performance of the catalyst prepared by the solid-phase conversion method (denoted as MP-ZSM-5) was evaluated by methanol-to-propylene (MTP) reaction. Compared with the zeolite catalyst that synthesized via the conventional hydrothermal method (denoted as HM-ZSM-5), MP-ZSM-5 not only prolongs catalytic lifetime from 18.7 to 36.0 h but also has higher selectivity for propylene by MP-ZSM-5 (43.7%) than that for HM-ZSM-5 (38.6%). In addition, Kissinger-Akahira-Sunose (KAS) model is applied to the TG result to study the template removal process kinetics. The average activation energy values required for the removal of CTAB and TPABr are 201.11 ± 13.42 and 326.88 ± 16.91 kJ∙mol-1, respectively. Furthermore, this result is well coupled with the model-free kinetic algorithms to determine the conversion and isoconversion of the TPABr and CTAB decomposition in ZSM-5, which serves as important guidelines for the industrial production process.


Assuntos
Zeolitas , Zeolitas/química , Cetrimônio , Microesferas , Ferro/química
3.
Small ; 18(4): e2105642, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34825490

RESUMO

The catalytic hydrogen-evolving activities of transition-metal phosphides are greatly related to the phosphorus content, but the physical origin of performance enhancement remains ambiguous, and tuning the catalytic activity of nickel phosphides (NiP2 /Ni5 P4 ) remains challenging due to unfavorable H* adsorption. Here, a strategy is introduced to integrate P-rich NiP2 and P-poor Ni5 P4 into in-plane heterostructures by anion substitution, in which P atoms at the in-plane interfaces perform as active sites to adsorb H* and thus facilitate the hydrogen evolution reaction (HER) process via modulating the electronic structure between NiP2 and Ni5 P4 . Consequently, the NiP2 /Ni5 P4 hybrid exhibits an outstanding hydrogen-evolving activity, requiring only 30 and 76 mV to afford 10 and 100 mA cm-2 in acid, respectively. It surpasses most of the earth-abundant electrocatalysts thus far, and is comparable to Pt catalysts (30/72 mV at 10/100 mA cm-2 ). Particularly, it can run smoothly at large current density and only requires 247 mV to reach 2000 mA cm-2 . Detailed theoretical calculations reveal that its exceptional activity stems from the moderate overlap of density states between P 2p and H 1s orbitals, thus optimizing the H*-adsorption strength. This work highlights a new avenue toward the fabrication of robust non-noble electrocatalysts by constructing in-plane heterojunctions.

4.
J Am Chem Soc ; 142(26): 11417-11427, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32506908

RESUMO

Oxygen-bearing copper (OBC) has been widely studied for enabling the C-C coupling of the electrocatalytic CO2 reduction reaction (CO2RR) since this is a distinctive hallmark of strongly correlated OBC systems and may benefit many other Cu-based catalytic processes. Unresolved problems, however, include the instability of and limited knowledge regarding OBC under realistic operating conditions, raising doubts about its role in CO2RR. Here, an atypical and stable OBC catalyst with a hierarchical pore and nanograin-boundary structure was constructed and was found to exhibit efficient CO2RR for the production of ethylene with a Faradaic efficiency of 45% at a partial current density of 44.7 mA cm-2 in neutral media, and the ethylene partial current density is nearly 26 and 116 times that of oxygen-free copper (OFC) and commercial Cu foam, respectively. More importantly, the structure-activity relationship in CO2RR was explored through a comprehensive analysis of experimental data and computational techniques, thus increasing the fundamental understanding of CO2RR. A systematic characterization analysis suggests that atypical OBC (Cu4O) was formed and that it is stable even at -1.00 V [(vs the reversible hydrogen electrode (RHE)]. Density functional theory calculations show that the atypical OBC enables control over CO adsorption and dimerization, making it possible to implement a preference for the electrosynthesis of ethylene (C2) products. These results provide insight into the synthesis and structural characteristics of OBC as well as its interplay with ethylene selectivity.

5.
Chemistry ; 25(33): 7903-7911, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-30974005

RESUMO

The advantage of using composite electrode materials for energy storage is, to a large extent, the synergistic role of their components. Our work focuses on the investigation of the interactions of each phase, exploring the patterns found with the change of materials to provide theoretical or experimental foundations for future study. Here, conductive polymers (CPs), including polyaniline (PANi), polypyrrole (PPy), and polythiophene (PTh), as well as reduced graphene oxide (rGO), and TiO2 with the different crystalline phases of anatase and rutile were applied to form a series of free-standing and flexible binary or ternary composite electrodes. The electrochemical behaviors of these composite electrodes are presented. The results indicate that the synergistic improvement in electrochemical performance is due to the incorporation of the different components. CPs significantly increase the current density of these composite films and contribute their pseudocapacitance to improve the specific capacitance, but lead to a decline in cycle stability. After introducing TiO2 , both the specific capacitance and the cycle-stability of rGO-TiO2 -CP were synergistically improved. A CP can magnify the pseudocapacitance behavior of any of the TiO2 crystalline phases, and interactions vary with the specific CP and the specific TiO2 crystalline phase employed. The synergistic effects of the as-prepared composites were theoretically predicted and explored.

6.
Small ; 15(6): e1804272, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30637939

RESUMO

Facile design of low-cost and high-efficiency catalysts with earth-abundant and cheap materials is desirable to replace platinum (Pt) for the hydrogen evolution reaction (HER) in water splitting, but the development of such HER catalysts with Pt-like activity using simple strategies remains challenging. A mesoporous hybrid catalyst of nickel phosphides nanoparticles and cobalt phosphosulfide/phosphide (CoS|Ni|P) nanosheet arrays for HER is reported here, which is developed by a facile three-step approach consisting of electrodeposition, thermal sulfurization, and phosphorization. This hybrid catalyst is highly robust and stable in acid for HER, and is distinguished by very low overpotentials of 41, 88, and 150 mV to achieve 10, 100, and 1000 mA cm-2 , respectively, as well as a small Tafel slope (45.2 mV dec-1 ), and a large exchange current density (964 µA cm-2 ). It is among the most efficient earth-abundant catalysts reported thus far for HER. More importantly, this electrocatalyst has electrochemical durability over 20 h under a wide range of current densities (up to 1 A cm-2 ) in acidic conditions, as well as very high turnover frequencies of 0.40 and 1.26 H2 s-1 at overpotentials of 75 and 100 mV, respectively, showing that it has great potential for practical applications in large-scale water electrolysis.

7.
Adv Mater ; 28(48): 10659-10663, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27731531

RESUMO

The promising quad-band solar spectral splitter incorporates the properties of the optical filter and the spectrally selective solar thermal absorber can direct PV band to PV modules and absorb thermal band energy for thermal process with low thermal losses. It provides a new strategy for spectral splitting and offers potential ways for hybrid PVT system design.

8.
Nat Commun ; 7: 12765, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27633712

RESUMO

With the massive consumption of fossil fuels and its detrimental impact on the environment, methods of generating clean power are urgent. Hydrogen is an ideal carrier for renewable energy; however, hydrogen generation is inefficient because of the lack of robust catalysts that are substantially cheaper than platinum. Therefore, robust and durable earth-abundant and cost-effective catalysts are desirable for hydrogen generation from water splitting via hydrogen evolution reaction. Here we report an active and durable earth-abundant transition metal dichalcogenide-based hybrid catalyst that exhibits high hydrogen evolution activity approaching the state-of-the-art platinum catalysts, and superior to those of most transition metal dichalcogenides (molybdenum sulfide, cobalt diselenide and so on). Our material is fabricated by growing ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. This advance provides a different pathway to design cheap, efficient and sizable hydrogen-evolving electrode by simultaneously tuning the number of catalytic edge sites, porosity, heteroatom doping and electrical conductivity.

9.
Proc Natl Acad Sci U S A ; 113(28): 7711-6, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27354529

RESUMO

The current simple nanofluid flooding method for tertiary or enhanced oil recovery is inefficient, especially when used with low nanoparticle concentration. We have designed and produced a nanofluid of graphene-based amphiphilic nanosheets that is very effective at low concentration. Our nanosheets spontaneously approached the oil-water interface and reduced the interfacial tension in a saline environment (4 wt % NaCl and 1 wt % CaCl2), regardless of the solid surface wettability. A climbing film appeared and grew at moderate hydrodynamic condition to encapsulate the oil phase. With strong hydrodynamic power input, a solid-like interfacial film formed and was able to return to its original form even after being seriously disturbed. The film rapidly separated oil and water phases for slug-like oil displacement. The unique behavior of our nanosheet nanofluid tripled the best performance of conventional nanofluid flooding methods under similar conditions.

10.
Nanotechnology ; 24(34): 345705, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23912680

RESUMO

In the present work, the effect of aluminum (Al) on the thermoelectric properties of PbTe is studied. Aluminum doped PbTe samples, fabricated by a ball milling and hot pressing, have Seebeck coefficients between -100 and -200 µV K-1 and electrical conductivities of (3.6-18) × 104 S m-1 at room temperature, which means that Al is an effective donor in PbTe. The first principle calculations clearly show an increase of the density of states close to the Fermi level in the conduction band due to Al doping, which averages up the energy and effective mass of electrons, resulting in enhancement of the Seebeck coefficient. The maximum figure-of-merit ZT of 1.2 is reached at 770 K in the Al0.03PbTe sample.


Assuntos
Alumínio/química , Eletricidade , Chumbo/química , Nanoestruturas/química , Telúrio/química , Temperatura , Difusão , Condutividade Elétrica , Elétrons , Nanoestruturas/ultraestrutura , Difração de Raios X
11.
Nat Nanotechnol ; 5(8): 597-601, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20581835

RESUMO

Molecular imprinting is a technique for preparing polymer scaffolds that function as synthetic receptors. Imprinted polymers that can selectively bind organic compounds have proven useful in sensor development. Although creating synthetic molecular-imprinting polymers that recognize proteins remains challenging, nanodevices and nanomaterials show promise in this area. Here, we show that arrays of carbon-nanotube tips with an imprinted non-conducting polymer coating can recognize proteins with subpicogram per litre sensitivity using electrochemical impedance spectroscopy. We have developed molecular-imprinting sensors specific for human ferritin and human papillomavirus derived E7 protein. The molecular-imprinting-based nanosensor can also discriminate between Ca(2+)-induced conformational changes in calmodulin. This ultrasensitive, label-free electrochemical detection of proteins offers an alternative to biosensors based on biomolecule recognition.


Assuntos
Técnicas Biossensoriais/instrumentação , Condutometria/instrumentação , Técnicas de Sonda Molecular/instrumentação , Nanotecnologia/instrumentação , Análise Serial de Proteínas/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Sensibilidade e Especificidade
12.
Nat Methods ; 2(6): 449-54, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15908924

RESUMO

Introduction of exogenous DNA into mammalian cells represents a powerful approach for manipulating signal transduction. The available techniques, however, are limited by low transduction efficiency and low cell viability after transduction. Here we report a highly efficient molecular delivery technique, named nanotube spearing, based on the penetration of nickel-embedded nanotubes into cell membranes by magnetic field driving. DNA plasmids containing the enhanced green fluorescent protein (EGFP) sequence were immobilized onto the nanotubes, and subsequently speared into targeted cells. We have achieved an unprecedented high transduction efficiency in Bal17 B-lymphoma, ex vivo B cells and primary neurons with high viability after transduction. This technique may provide a powerful tool for highly efficient gene transfer into a variety of cells, especially the hard-to-transfect cells.


Assuntos
DNA/administração & dosagem , DNA/genética , Sistemas de Liberação de Medicamentos/métodos , Campos Eletromagnéticos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Transfecção/métodos , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/efeitos da radiação , Humanos , Nanotubos de Carbono/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA