Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612992

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a common chronic hepatic condition whose impact on human health is increasingly significant. The imbalance of the gut microbiome, linked to insulin resistance, heightened intestinal permeability, and pro-inflammatory reactions, may be the linchpin in the development of NAFLD. In our research, the impact of Lactiplantibacillus plantarum ZDY2013 administration for 12 weeks on gut microbiota dysbiosis induced by a high-fat, high-fructose, high-cholesterol (FHHC) diet in male C57BL/6n mice was investigated. Research results presented that the intervention of L. plantarum ZDY2013 in mice fed with the FHHC diet could restore their liver function and regulate oxidative stress. Compared to mice in the model group, the intervention of L. plantarum ZDY2013 significantly regulated the gut microbiota, inhibited the LPS/NF-κB pathway, and led to a lower level of colonic inflammation in the mice administered with L. plantarum ZDY2013. It also improved insulin resistance to regulate the PI3K/Akt pathway and lipid metabolism, thereby resulting in reduced fat accumulation in the liver. The above results suggest that the intervention of L. plantarum ZDY2013 can hinder the progression of diet-induced NAFLD by reducing inflammation to regulate the PI3K/Akt pathway and regulating gut microbiota disturbance.


Assuntos
Microbioma Gastrointestinal , Hipercolesterolemia , Resistência à Insulina , Lactobacillus plantarum , Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Frutose , Inflamação/tratamento farmacológico
2.
Food Res Int ; 162(Pt A): 112010, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461238

RESUMO

High-salt diet (HSD) affects the composition and function of the intestinal microbiota and cause health problems. This study confirmed that HSD aggravates dextran sulphate sodium (DSS)-induced colitis by changing the relative abundance of the gut microbiota, activating the NF-κB pathway, and up-regulating the mRNA levels of inflammatory factors. We explored the effect of L. plantarum 1201 in negating DSS-induced ulcerative colitis, which is aggravated by HSD for the first time. Results show that L. plantarum 1201 rebuilt the balance of intestinal flora by decreasing the ratio of Firmicutes/Bacteroidetes and increasing the relative abundance of Bifidobacterium, Lactobacillus and butyric-producing bacteria. Moreover, L. plantarum 1201 inhibited the up-regulation of inflammatory cytokines (e.g., IL-1ß, TNF-α, IL-6, IL-22, and IFN-γ) mRNA levels, increased colonic tight junction protein (ZO-1, ocludin, and claudin-3) expression, and increased serum levels of beneficial metabolites, including alpha-tocopherol (α-T) and D-mannose. By reconstructing an animal model of colitis, we further discovered that α-T and D-mannose inhibited the NF-κB pathway, improved tissue injury, and decreased the expression of pro-inflammatory cytokines (e.g., IL-1ß, TNF-α, and IL-6). This study proves for the first time that L. plantarum 1201 attenuates high-salt-aggravated colitis by increasing the serum concentrations of endogenic D-mannose in mice serum and inhibiting the consumption of α-T through intestinal flora. Therefore, regulating the gut microbiota is a potential treatment for high-salt-aggravated colitis.


Assuntos
Colite , Microbioma Gastrointestinal , Camundongos , Animais , Manose , Fator de Necrose Tumoral alfa , NF-kappa B , Interleucina-6 , Dieta , Cloreto de Sódio na Dieta/efeitos adversos , Colite/induzido quimicamente , Cloreto de Sódio , alfa-Tocoferol
3.
Pharmacol Res ; 184: 106406, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987480

RESUMO

The gut microbiota plays a role in tumor therapy by participating in immune regulation. Here, we demonstrated through 8-day probiotic supplementation experiments and fecal microbiota transplantation experiments that Bifidobacterium animalis subsp. lactis SF enhanced the antitumor effect of irinotecan and prevented the occurrence of intestinal damage by modulating the gut microbiota and reducing the relative abundance of pro-inflammatory microbiota. Therefore, the intestinal inflammation was inhibited, the TGF-ß leakage was reduced, and the PI3K/AKT pathway activation was inhibited. Thus, the tumor apoptotic autophagy was finally promoted. Simultaneously, the reduction of TGF-ß relieved the immunosuppression caused by CPT-11, promoted the differentiation of CD4+ and CD8+ T cells in tumor tissue, and consequently inhibited tumor growth and invasion. This study disclosed the mechanism of B. lactis SF assisting CPT-11 in antitumor activity and suggested that B. lactis SF plays a new role in anticancer effects as a nutritional intervention.


Assuntos
Bifidobacterium animalis , Microbioma Gastrointestinal , Probióticos , Linfócitos T CD8-Positivos , Irinotecano/farmacologia , Fosfatidilinositol 3-Quinases , Probióticos/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Fator de Crescimento Transformador beta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA