Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lipids ; 57(1): 3-16, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34618372

RESUMO

Lysosomal acid lipase (LAL), encoded by the gene LIPA, facilitates the intracellular processing of lipids by hydrolyzing cholesteryl esters and triacylglycerols present in newly internalized lipoproteins. Loss-of-function mutations in LIPA result in cholesteryl ester storage disease (CESD) or Wolman disease when mutations cause complete loss of LAL activity. Although the phenotype of a mouse CESD model has been extensively characterized, there has not been a focus on the brain at different stages of disease progression. In the current studies, whole-brain mass and the concentrations of cholesterol in both the esterified (EC) and unesterified (UC) fractions were measured in Lal-/- and matching Lal+/+ mice (FVB-N strain) at ages ranging from 14 up to 280 days after birth. Compared to Lal+/+ controls at 50, 68-76, 140-142, and 230-280 days of age, Lal-/- mice had brain weights that averaged approximately 6%, 7%, 18%, and 20% less, respectively. Brain EC levels were higher in the Lal-/- mice at every age, being elevated 27-fold at 230-280 days. Brain UC concentrations did not show a genotypic difference at any age. The elevated brain EC levels in the Lal-/- mice did not reflect EC in residual blood. An mRNA expression analysis for an array of genes involved in the synthesis, catabolism, storage, and transport of cholesterol in the brains of 141-day old mice did not detect any genotypic differences although the relative mRNA levels for several markers of inflammation were moderately elevated in the Lal-/- mice. The possible sites of EC accretion in the central nervous system are discussed.


Assuntos
Doença do Armazenamento de Colesterol Éster , Doença de Wolman , Animais , Encéfalo/metabolismo , Colesterol , Homeostase , Fígado/metabolismo , Camundongos , Esterol Esterase/genética , Esterol Esterase/metabolismo
2.
Nature ; 596(7873): 570-575, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34290407

RESUMO

The classic mode of STING activation is through binding the cyclic dinucleotide 2'3'-cyclic GMP-AMP (cGAMP), produced by the DNA sensor cyclic GMP-AMP synthase (cGAS), which is important for the innate immune response to microbial infection and autoimmune disease. Modes of STING activation that are independent of cGAS are much less well understood. Here, through a spatiotemporally resolved proximity labelling screen followed by quantitative proteomics, we identify the lysosomal membrane protein Niemann-Pick type C1 (NPC1) as a cofactor in the trafficking of STING. NPC1 interacts with STING and recruits it to the lysosome for degradation in both human and mouse cells. Notably, we find that knockout of Npc1 'primes' STING signalling by physically linking or 'tethering' STING to SREBP2 trafficking. Loss of NPC1 protein also 'boosts' STING signalling by blocking lysosomal degradation. Both priming and boosting of STING signalling are required for severe neurological disease in the Npc1-/- mouse. Genetic deletion of Sting1 (the gene that encodes STING) or Irf3, but not that of Cgas, significantly reduced the activation of microglia and relieved the loss of Purkinje neurons in the cerebellum of Npc1-/- mice, leading to improved motor function. Our study identifies a cGAS- and cGAMP-independent mode of STING activation that affects neuropathology and provides a therapeutic target for the treatment of Niemann-Pick disease type C.


Assuntos
Proteínas de Membrana/metabolismo , Modelos Biológicos , Doença de Niemann-Pick Tipo C/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Cerebelo/patologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/imunologia , Lisossomos/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Destreza Motora , Doenças Neuroinflamatórias , Proteína C1 de Niemann-Pick/deficiência , Proteína C1 de Niemann-Pick/genética , Proteína C1 de Niemann-Pick/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteólise , Células de Purkinje/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
3.
J Steroid Biochem Mol Biol ; 185: 17-26, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071248

RESUMO

AIM: Vitamin D deficiency in rodents negatively affects glucose-stimulated insulin secretion (GSIS) and human epidemiological studies connect poor vitamin D status with type 2 diabetes. Previous studies performed primarily in rat islets have shown that vitamin D can enhance GSIS. However the molecular pathways linking vitamin D and insulin secretion are currently unknown. Therefore, experiments were undertaken to elucidate the transcriptional role(s) of the vitamin D receptor (VDR) in islet function. METHODS: Human and mouse islets were cultured with vehicle or 1,25-dihydroxyvitamin-D3 (1,25D3) and then subjected to GSIS assays. Insulin expression, insulin content, glucose uptake and glucose-stimulated calcium influx were tested. Microarray analysis was performed. In silico analysis was used to identify VDR response elements (VDRE) within target genes and their activity was tested using reporter assays. RESULTS: Vdr mRNA is abundant in islets and Vdr expression is glucose-responsive. Preincubation of mouse and human islets with 1,25D3 enhances GSIS and increases glucose-stimulated calcium influx. Microarray analysis identified the R-type voltage-gated calcium channel (VGCC) gene, Cacna1e, which is highly upregulated by 1,25D3 in human and mouse islets and contains a conserved VDRE in intron 7. Results from GSIS assays suggest that 1,25D3 might upregulate a variant of R-type VGCC that is resistant to chemical inhibition. CONCLUSION: These results suggest that the role of 1,25D3 in regulating calcium influx acts through the R-Type VGCC during GSIS, thereby modulating the capacity of beta cells to secrete insulin.


Assuntos
Calcitriol/metabolismo , Canais de Cálcio Tipo R/metabolismo , Cálcio/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Receptores de Calcitriol/metabolismo , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Deficiência de Vitamina D/patologia
4.
Proc Natl Acad Sci U S A ; 115(40): E9499-E9506, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30228117

RESUMO

Acetyl-CoA synthetase 2 (ACSS2) is a conserved nucleocytosolic enzyme that converts acetate to acetyl-CoA. Adult mice lacking ACSS2 appear phenotypically normal but exhibit reduced tumor burdens in mouse models of liver cancer. The normal physiological functions of this alternate pathway of acetyl-CoA synthesis remain unclear, however. Here, we reveal that mice lacking ACSS2 exhibit a significant reduction in body weight and hepatic steatosis in a diet-induced obesity model. ACSS2 deficiency reduces dietary lipid absorption by the intestine and also perturbs repartitioning and utilization of triglycerides from adipose tissue to the liver due to lowered expression of lipid transporters and fatty acid oxidation genes. In this manner, ACSS2 promotes the systemic storage or metabolism of fat according to the fed or fasted state through the selective regulation of genes involved in lipid metabolism. Thus, targeting ACSS2 may offer a therapeutic benefit for the treatment of fatty liver disease.


Assuntos
Acetato-CoA Ligase/metabolismo , Tecido Adiposo/metabolismo , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Fígado/metabolismo , Acetato-CoA Ligase/genética , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Tecido Adiposo/patologia , Animais , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fígado/patologia , Camundongos , Camundongos Knockout
5.
Arterioscler Thromb Vasc Biol ; 34(9): 1871-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25035344

RESUMO

OBJECTIVE: Recent genome-wide association studies revealed that a genetic variant in the loci corresponding to histone deacetylase 9 (HDAC9) is associated with large vessel stroke. HDAC9 expression was upregulated in human atherosclerotic plaques in different arteries. The molecular mechanisms how HDAC9 might increase atherosclerosis is not clear. APPROACH AND RESULTS: In this study, we show that systemic and bone marrow cell deletion of HDAC9 decreased atherosclerosis in LDLr(-/-) (low density lipoprotein receptor) mice with minimal effect on plasma lipid concentrations. HDAC9 deletion resulted upregulation of lipid homeostatic genes, downregulation of inflammatory genes, and polarization toward an M2 phenotype via increased accumulation of total acetylated H3 and H3K9 at the promoters of ABCA1 (ATP-binding cassette transporter), ABCG1, and PPAR-γ (peroxisome proliferator-activated receptor) in macrophages. CONCLUSIONS: We conclude that macrophage HDAC9 upregulation is atherogenic via suppression of cholesterol efflux and generation of alternatively activated macrophages in atherosclerosis.


Assuntos
Aterosclerose/enzimologia , Colesterol/metabolismo , Histona Desacetilases/fisiologia , Ativação de Macrófagos , Macrófagos Peritoneais/metabolismo , Proteínas Repressoras/fisiologia , Animais , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/cirurgia , Transplante de Medula Óssea , Diferenciação Celular , Linhagem Celular , Colesterol/sangue , Colesterol na Dieta , Dieta Aterogênica , Gorduras na Dieta , Indução Enzimática , Feminino , Histona Desacetilases/deficiência , Histona Desacetilases/genética , Humanos , Inflamação/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/biossíntese , PPAR gama/genética , Fosfolipídeos/sangue , Receptores de LDL/deficiência , Receptores de LDL/genética , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Triglicerídeos/sangue
6.
J Biol Chem ; 289(7): 4417-31, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24273168

RESUMO

The toxic subcellular accumulation of lipids predisposes several human metabolic syndromes, including obesity, type 2 diabetes, and some forms of neurodegeneration. To identify pathways that prevent lipid-induced cell death, we performed a genome-wide fatty acid sensitivity screen in Saccharomyces cerevisiae. We identified 167 yeast mutants as sensitive to 0.5 mm palmitoleate, 45% of which define pathways that were conserved in humans. 63 lesions also impacted the status of the lipid droplet; however, this was not correlated to the degree of fatty acid sensitivity. The most liposensitive yeast strain arose due to deletion of the "ARE2 required for viability" (ARV1) gene, encoding an evolutionarily conserved, potential lipid transporter that localizes to the endoplasmic reticulum membrane. Down-regulation of mammalian ARV1 in MIN6 pancreatic ß-cells or HEK293 cells resulted in decreased neutral lipid synthesis, increased fatty acid sensitivity, and lipoapoptosis. Conversely, elevated expression of human ARV1 in HEK293 cells or mouse liver significantly increased triglyceride mass and lipid droplet number. The ARV1-induced hepatic triglyceride accumulation was accompanied by up-regulation of DGAT1, a triglyceride synthesis gene, and the fatty acid transporter, CD36. Furthermore, ARV1 was identified as a transcriptional of the protein peroxisome proliferator-activated receptor α (PPARα), a key regulator of lipid homeostasis whose transcriptional targets include DGAT1 and CD36. These results implicate ARV1 as a protective factor in lipotoxic diseases due to modulation of fatty acid metabolism. In conclusion, a lipotoxicity-based genetic screen in a model microorganism has identified 75 human genes that may play key roles in neutral lipid metabolism and disease.


Assuntos
Proteínas de Transporte/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Triglicerídeos/metabolismo , Animais , Apoptose/fisiologia , Antígenos CD36/genética , Antígenos CD36/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/genética , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Fígado/citologia , Proteínas de Membrana/genética , Camundongos , PPAR alfa/genética , PPAR alfa/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Triglicerídeos/genética
7.
Endocrinology ; 155(1): 98-107, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24189139

RESUMO

Ghrelin is an orexigenic hormone secreted principally from a distinct population of gastric endocrine cells. Molecular mechanisms regulating ghrelin secretion are mostly unknown. Recently, norepinephrine (NE) was shown to enhance ghrelin release by binding to ß1-adrenergic receptors on ghrelin cells. Here, we use an immortalized stomach-derived ghrelin cell line to further characterize the intracellular signaling pathways involved in NE-induced ghrelin secretion, with a focus on the roles of Ca(2+) and cAMP. Several voltage-gated Ca(2+) channel (VGCC) family members were found by quantitative PCR to be expressed by ghrelin cells. Nifedipine, a selective L-type VGCC blocker, suppressed both basal and NE-stimulated ghrelin secretion. NE induced elevation of cytosolic Ca(2+) levels both in the presence and absence of extracellular Ca(2+). Ca(2+)-sensing synaptotagmins Syt7 and Syt9 were also highly expressed in ghrelin cell lines, suggesting that they too help mediate ghrelin secretion. Raising cAMP with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine also stimulated ghrelin secretion, although such a cAMP-mediated effect likely does not involve protein kinase A, given the absence of a modulatory response to a highly selective protein kinase A inhibitor. However, pharmacological inhibition of another target of cAMP, exchange protein-activated by cAMP (EPAC), did attenuate both basal and NE-induced ghrelin secretion, whereas an EPAC agonist enhanced basal ghrelin secretion. We conclude that constitutive ghrelin secretion is primarily regulated by Ca(2+) influx through L-type VGCCs and that NE stimulates ghrelin secretion predominantly through release of intracellular Ca(2+). Furthermore, cAMP and its downstream activation of EPAC are required for the normal ghrelin secretory response to NE.


Assuntos
Cálcio/metabolismo , Grelina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Norepinefrina/metabolismo , Agonistas alfa-Adrenérgicos/química , Animais , Cloreto de Cádmio/química , Linhagem Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citosol/metabolismo , Ácido Egtázico/química , Imuno-Histoquímica , Camundongos , Nifedipino/química , Transdução de Sinais , Sinaptotagminas/metabolismo
8.
J Lipid Res ; 53(11): 2331-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22892156

RESUMO

An injection of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) to mice lacking Niemann Pick type C (NPC) protein results in delayed neurodegeneration, decreased inflammation, and prolonged lifespan. Changes in sterol balance observed in Npc1(-/-) mice 24 h after HP-ß-CD administration suggest that HP-ß-CD facilitates the release of accumulated lysosomal cholesterol, the molecular hallmark of this genetic disorder. Current studies were performed to evaluate the time course of HP-ß-CD effects. Within 3 h after HP-ß-CD injection, decreases in cholesterol synthesis rates and increases in cholesteryl ester levels were detected in tissues of Npc1(-/-) mice. The levels of RNAs for target genes of sterol-sensing transcription factors were altered by 6 h in liver, spleen, and ileum. Despite the cholesterol-binding capacity of HP-ß-CD, there was no evidence of increased cholesterol in plasma or urine of treated Npc1(-/-) mice, suggesting that HP-ß-CD does not carry sterol from the lysosome into the bloodstream for ultimate urinary excretion. Similar changes in sterol balance were observed in cultured cells from Npc1(-/-) mice using HP-ß-CD and sulfobutylether-ß-CD, a variant that can interact with sterol but not facilitate its solubilization. Taken together, our results demonstrate that HP-ß-CD works in cells of Npc1(-/-) mice by rapidly liberating lysosomal cholesterol for normal sterol processing within the cytosolic compartment.


Assuntos
Colesterol/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteínas/metabolismo , beta-Ciclodextrinas/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Células Cultivadas , Colesterol/urina , Citocinas/sangue , Peptídeos e Proteínas de Sinalização Intracelular , Lipoproteínas/sangue , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/sangue , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/urina , Proteínas/genética
9.
Am J Physiol Gastrointest Liver Physiol ; 299(5): G1012-22, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20724527

RESUMO

Cholesterol homeostasis in the enterocyte is regulated by the interplay of multiple genes that ultimately determines the net amount of cholesterol reaching the circulation from the small intestine. The effect of deleting these genes, particularly acyl CoA:cholesterol acyl transferase 2 (ACAT2), on cholesterol absorption and fecal sterol excretion is well documented. We also know that the intestinal mRNA level for adenosine triphosphate-binding cassette transporter A1 (ABCA1) increases in Acat2(-/-) mice. However, none of these studies has specifically addressed how ACAT2 deficiency impacts the relative proportions of esterified and unesterified cholesterol (UC) in the enterocyte and whether the concurrent loss of ABCA1 might result in a marked buildup of UC. Therefore, the present studies measured the expression of numerous genes and related metabolic parameters in the intestine and liver of ACAT2-deficient mice fed diets containing either added cholesterol or ezetimibe, a selective sterol absorption inhibitor. Cholesterol feeding raised the concentration of UC in the small intestine, and this was accompanied by a significant reduction in the relative mRNA level for Niemann-Pick C1-like 1 (NPC1L1) and an increase in the mRNA level for both ABCA1 and ABCG5/8. All these changes were reversed by ezetimibe. When mice deficient in both ACAT2 and ABCA1 were fed a high-cholesterol diet, the increase in intestinal UC levels was no greater than it was in mice lacking only ACAT2. This resulted from a combination of compensatory mechanisms including diminished NPC1L1-mediated cholesterol uptake, increased cholesterol efflux via ABCG5/8, and possibly rapid cell turnover.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Esterol O-Aciltransferase/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Análise de Variância , Animais , Azetidinas/farmacologia , Dieta , Esterificação/efeitos dos fármacos , Ezetimiba , Homeostase/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase 2
10.
Pediatr Res ; 68(4): 309-15, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20581737

RESUMO

Niemann-Pick type C1 (NPC1) disease arises from a mutation inactivating NPC1 protein that normally moves unesterified cholesterol from the late endosomal/lysosomal complex of cells to the cytosolic compartment for processing. As a result, cholesterol accumulates in every tissue of the body causing liver, lung, and CNS disease. Treatment of the murine model of this disease, the npc1 mouse, s.c. with ß-cyclodextrin (4000 mg/kg) one time each week normalized cellular cholesterol metabolism in the liver and most other organs. At the same time, the hepatic dysfunction seen in the untreated npc1 mouse was prevented. The severity of cerebellar neurodegeneration also was ameliorated, although not entirely prevented, and the median lifespan of the animals was doubled. However, in contrast to these other organs, lung showed progressive macrophage infiltration with development of lipoid pneumonitis. These studies demonstrated that weekly cyclodextrin administration overcomes the lysosomal transport defect associated with the NPC1 mutation, nearly normalizes hepatic and whole animal cholesterol pools, and prevents the development of liver disease. Furthermore, this treatment slows cerebellar neurodegeneration but has little or no effect on the development of progressive pulmonary disease.


Assuntos
Anticolesterolemiantes/administração & dosagem , Colesterol/metabolismo , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Proteínas/genética , beta-Ciclodextrinas/administração & dosagem , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Transporte Biológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Esquema de Medicação , Injeções Subcutâneas , Peptídeos e Proteínas de Sinalização Intracelular , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatias/metabolismo , Hepatopatias/patologia , Hepatopatias/prevenção & controle , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pneumopatias/metabolismo , Pneumopatias/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Mutação , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Degeneração Neural/prevenção & controle , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Fatores de Tempo
11.
J Biol Chem ; 283(36): 24899-908, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18606808

RESUMO

Carbohydrate response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays a critical role in the glucose-mediated induction of gene products involved in hepatic glycolysis and lipogenesis. Glucose affects the activity of ChREBP largely through post-translational mechanisms involving phosphorylation-dependent cellular localization. In this work we show that the N-terminal region of ChREBP (residues 1-251) regulates its subcellular localization via an interaction with 14-3-3. 14-3-3 binds an alpha-helix in this region (residues 125-135) to retain ChREBP in the cytosol, and binding of 14-3-3 is facilitated by phosphorylation of nearby Ser-140 and Ser-196. Phosphorylation of ChREBP at these sites was essential for its interaction with CRM1 for export to the cytosol, whereas nuclear import of ChREBP requires dephosphorylated ChREBP to interact with importin alpha. Notably, 14-3-3 appears to compete with importin alpha for ChREBP binding. 14-3-3beta bound to a synthetic peptide spanning residues 125-144 and bearing a phosphate at Ser-140 with a dissociation constant of 1.1 microm, as determined by isothermal calorimetry. The interaction caused a shift in the fluorescence maximum of the tryptophan residues of the peptide. The corresponding unphosphorylated peptide failed to bind 14-3-3beta. These results suggest that interactions with importin alpha and 14-3-3 regulate movement of ChREBP into and out of the nucleus, respectively, and that these interactions are regulated by the ChREBP phosphorylation status.


Assuntos
Proteínas 14-3-3/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas 14-3-3/genética , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular , Núcleo Celular/genética , Citosol/metabolismo , Glucose/genética , Glucose/metabolismo , Glicólise/fisiologia , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Lipogênese/fisiologia , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/genética , Proteína Exportina 1
12.
Adv Physiol Educ ; 29(3): 151-9, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16109794

RESUMO

In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene expression as a result of physiology, pathophysiology, or development. This method can be applied to model systems to measure responses to experimental stimuli and to gain insight into potential changes in protein level and function. Thus physiology can be correlated with molecular events to gain a better understanding of biological processes. For clinical molecular diagnostics, real-time PCR can be used to measure viral or bacterial loads or evaluate cancer status. Here, we discuss the basic concepts, chemistries, and instrumentation of real-time PCR and include present applications and future perspectives for this technology in biomedical sciences and in life science education.


Assuntos
Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/tendências , Animais , Disciplinas das Ciências Biológicas/educação , Expressão Gênica/genética , Humanos , Análise Serial de Proteínas/métodos , Análise Serial de Proteínas/tendências
13.
J Biol Chem ; 280(30): 28103-9, 2005 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-15919660

RESUMO

Caveolin-1 (CAV1) is the structural protein of the filamentous coat that decorates the cytoplasmic surface of each caveola. Cell culture studies have implicated CAV1 in playing an important role in intracellular cholesterol trafficking. In addition, it has been reported that CAV1 forms a detergent-resistant protein complex with Annexin-2 in enterocytes that can be disrupted by the cholesterol absorption inhibitor ezetimibe, suggesting a possible role for CAV1 in cholesterol absorption. In this report, we have evaluated cholesterol homeostasis in Cav1 knock-out mice. Deletion of CAV1 does not result in either a compensatory increase of CAV2 or CAV3 in intestine. In addition, Cav1 knock-out mice display normal mRNA and protein levels of Annexin-2 or the putative cholesterol transport protein Niemann-Pick C1-like 1 (NPC1L1) in proximal intestinal mucosa. Fractional cholesterol absorption and fecal neutral sterol excretion are statistically similar in Cav1 knock-out mice and their wild-type littermates. Moreover, oral administration of ezetimibe is equally effective in decreasing cholesterol absorption in Cav1 null mice and wild-type controls. The mRNA expression levels of genes sensitive to intracellular cholesterol concentration (ATP-binding cassette transporters ABCA1 and ABCG5, hydroxymethylglutaryl-CoA synthase and the LDL receptor) are similarly altered in the proximal intestinal mucosa of Cav1 null and wild-type mice following ezetimibe treatment. These results demonstrate that CAV1 is not required for cholesterol absorption or ezetimibe sensitivity in the mouse.


Assuntos
Caveolinas/fisiologia , Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/química , Animais , Anexina A2/farmacologia , Anticolesterolemiantes/farmacologia , Azetidinas/farmacologia , Transporte Biológico , Northern Blotting , Western Blotting , Caveolina 1 , Caveolina 2 , Caveolina 3 , Caveolinas/metabolismo , Detergentes/farmacologia , Duodeno/metabolismo , Enterócitos/metabolismo , Ezetimiba , Deleção de Genes , Genótipo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA/metabolismo , RNA Mensageiro/metabolismo , Esteróis/metabolismo
14.
J Neuropathol Exp Neurol ; 64(4): 323-33, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15835268

RESUMO

In Niemann-Pick type C (NPC) disease, cholesterol associated with either apoE or apoB100 is taken up by cells in all tissues, including the central nervous system, through clathrin-coated pits and becomes trapped in late endosomes and lysosomes. This study defines the functional, biochemical, and molecular events that ensue as nerve cell death occurs. In mice homozygous for a mutation in NPC1, neuromuscular dysfunction begins at 5 weeks and death occurs at 13 weeks of age. Cholesterol accumulates in every tissue in the body. Purkinje cell loss in the cerebellum begins at 3 to 4 weeks of age and is nearly complete by 11 weeks. This neurodegeneration in the cerebellum is associated with increases in the levels of mRNA for caspase 1, caspase 3, NPC2, LipA, apoE, apoD, glial fibrillary acidic protein, and tumor necrosis factor-alpha, but not for most target genes of the LXR nuclear receptors. The level for apoER2 is significantly reduced. These studies show there is a compensatory increase in NPC2 and LipA in an attempt to overcome the physiological defect caused by the mutation. Nevertheless, neurodegeneration proceeds utilizing apoptosis with activation of glial cells, increased apoE and apoD synthesis, and increased cholesterol turnover across the CNS.


Assuntos
Colesterol/metabolismo , Doenças Neurodegenerativas , Neurônios/metabolismo , Doenças de Niemann-Pick , Animais , Peso Corporal , Morte Celular , Cerebelo/citologia , Cerebelo/patologia , Colesterol na Dieta , Feminino , Peptídeos e Proteínas de Sinalização Intracelular , Lipase/genética , Lipase/metabolismo , Lisossomos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Dados de Sequência Molecular , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/patologia , Proteína C1 de Niemann-Pick , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/metabolismo , Doenças de Niemann-Pick/patologia , Doenças de Niemann-Pick/fisiopatologia , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Taxa de Sobrevida
15.
Hepatology ; 40(5): 1088-97, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15486928

RESUMO

Acyl CoA:cholesterol acyltransferase (ACAT) 2 is the major cholesterol-esterifying enzyme in mouse enterocytes and hepatocytes. Male ACAT2(+/+) and ACAT2(-/ -) mice were fed chow containing added cholesterol (0%-0.500% w/w) for 24 days. Over this range, fractional cholesterol absorption in the ACAT2(+/+) mice fell from 41.4% +/- 6.6% to 21.0% +/- 5.2%, and in their ACAT2(-/-) counterparts it fell from 35.1% +/- 4.5% to 7.9% +/- 0.8%. The mass of dietary cholesterol absorbed (mg/d per 100 g body weight) increased from 1.2 +/- 0.2 to 14.7 +/- 4.4 in the ACAT2(+/+) mice and from 1.0 +/- 0.2 to 5.5 +/- 0.6 in those without ACAT2. In the ACAT2(+/+) mice, hepatic cholesterol concentrations increased as a function of intake despite compensatory changes in cholesterol and bile acid synthesis and in the expression of adenosine triphosphate-binding cassette transporter G5 (ABCG5) and ABC transporter G8 (ABCG8). In contrast, in ACAT2(-/-) mice in which the amount of cholesterol absorbed at the highest intake was only 37% of that in the ACAT2(+/+) mice, suppression of synthesis was a sufficient adaptive response; there was no change in bile acid synthesis, ABCG5/G8 expression, or hepatic cholesterol concentration. The expression of adenosine triphosphate-binding cassette transporter A1 (ABCA1) in the jejunum was markedly elevated in the ACAT2(-/-) mice, irrespective of dietary cholesterol level. In conclusion, although ACAT2 deficiency limits cholesterol absorption, the extent to which it impacts hepatic cholesterol homeostasis depends on cholesterol intake. Loss of ACAT2 activity may result in unesterified cholesterol being absorbed via an ABCA1-mediated basolateral efflux pathway.


Assuntos
Colesterol na Dieta/farmacocinética , Colesterol/metabolismo , Homeostase , Fígado/metabolismo , Esterol O-Aciltransferase/deficiência , Transportador 1 de Cassete de Ligação de ATP , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Absorção , Animais , Lipoproteínas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Concentração Osmolar , Esterol O-Aciltransferase/metabolismo , Esterol O-Aciltransferase 2
16.
Mol Cell Endocrinol ; 207(1-2): 39-45, 2003 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-12972182

RESUMO

Steroid biosynthesis in ovary is enhanced by the orphan nuclear receptor, steroidogenic factor-1 (SF-1); however, we reported that liver receptor homolog-1 (LRH-1), a closely related receptor to SF-1, is also expressed in mouse ovary. To further investigate the role of LRH-1 in mouse ovary, we used in situ hybridization to identify the cell types that express LRH-1 versus SF-1, and carried out functional studies to determine the role of LRH-1 in the regulation of the human (h) ovary-specific CYP19 promoter. LRH-1 expression was found to be abundant and highly restricted to cells involved in estrogen biosynthesis-granulosa cells during the estrous cycle, and in corpora lutea (CL) of pregnancy. In contrast, SF-1 was expressed most highly in C(19)-steroid-producing theca cells and interstitium, and at low levels in granulosa and luteal cells. Transfection studies using granulosa cells demonstrated that LRH-1 is a potent regulator of both basal and forskolin-induced transcription of the ovary-specific hCYP19 promoter. This activity was dependent upon two nuclear receptor half-sites within the proximal hCYP19 promoter. Based on these findings, we propose that LRH-1 plays an important role as a competence factor in regulating aromatase, and thus estrogen biosynthesis, in ovary.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Ovário/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Aromatase/genética , Bovinos , Colforsina/farmacologia , Corpo Lúteo/metabolismo , AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Ciclo Estral/fisiologia , Feminino , Fatores de Transcrição Fushi Tarazu , Expressão Gênica , Genes Reporter/genética , Células da Granulosa/metabolismo , Humanos , Hibridização In Situ , Células Lúteas/metabolismo , Camundongos , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ovário/citologia , Ovário/efeitos dos fármacos , Gravidez , Receptores Citoplasmáticos e Nucleares/genética , Fator Esteroidogênico 1 , Células Tecais/química , Células Tecais/metabolismo , Fatores de Transcrição/genética , Transfecção
17.
Proc Natl Acad Sci U S A ; 100(1): 223-8, 2003 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-12509506

RESUMO

Sterol 27-hydroxylase (CYP27A1) is required for bile acid synthesis by both the classical and alternate pathways. Cyp27a1(-/-) mice exhibit a dramatic increase in the activity of cytochrome P450 3A (CYP3A), which catalyzes side-chain hydroxylations of bile acid intermediates, thereby facilitating their excretion in the bile and urine. We examine the role of the nuclear xenobiotic receptor PXR (pregnane X receptor) in this process. We demonstrate that expression of Cyp3a11 and other established PXR target genes is increased in the Cyp27a1(-/-) mice. WhenCyp27a1(-/-) mice are fed a diet containing either cholic acid or chenodeoxycholic acid, expression of CYP7A1, which catalyzes the rate-limiting step in bile acid biosynthesis, is strongly suppressed. In parallel, the induction of Cyp3a11 observed in these mice is reversed, suggesting that bile acid intermediates serve as PXR activators. In support of this hypothesis, three potentially toxic sterols (7alpha-hydroxy-4-cholesten-3-one, 5beta-cholestan-3alpha,7alpha,12alpha-triol, and 4-cholesten-3-one), including two that are known to accumulate in Cyp27a1(-/-) mice, are efficacious activators of mouse PXR. All three compounds are more potent activators of mouse PXR than of human PXR, which may explain in part why humans who lack functional CYP27A1 do not display a corresponding increase in CYP3A activity and are stricken with the disease cerebrotendinous xanthomatosis. Taken together, these results reveal the existence of a feedforward regulatory loop by which potentially toxic bile acid intermediates activate PXR and induce their own metabolism. In addition, this study demonstrates that animal models with alterations in gene expression can be used to identify endogenous ligands for orphan nuclear receptors.


Assuntos
Ácidos e Sais Biliares/biossíntese , Núcleo Celular/metabolismo , Colesterol/metabolismo , Proteínas de Plantas , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Esteroides/genética , Animais , Colestanotriol 26-Mono-Oxigenase , Colesterol na Dieta , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/deficiência , Sistema Enzimático do Citocromo P-450/genética , Primers do DNA , Escherichia coli/genética , Ligantes , Camundongos , Camundongos Knockout , Receptor de Pregnano X , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Esteroide Hidroxilases/deficiência , Esteroide Hidroxilases/genética , Xenobióticos/farmacocinética
18.
J Lipid Res ; 43(11): 1864-74, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12401885

RESUMO

Intestinal cholesterol absorption is a major determinant of plasma low density lipoprotein-cholesterol (LDL-C) concentrations. Ezetimibe (SCH 58235) and its analogs SCH 48461 and SCH 58053 are novel potent inhibitors of cholesterol absorption whose mechanism of action is unknown. These studies investigated the effect of SCH 58053 on cholesterol metabolism in female 129/Sv mice. In mice fed a low cholesterol rodent diet containing SCH 58053, cholesterol absorption was reduced by 46% and fecal neutral sterol excretion was increased 67%, but biliary lipid composition and bile acid synthesis, pool size, and pool composition were unchanged. When the dietary cholesterol content was increased either 10- or 50-fold, those animals given SCH 58053 manifested lower hepatic and biliary cholesterol concentrations than did their untreated controls. Cholesterol feeding increased the relative mRNA level for adenosine triphosphate-binding cassette transporter A1 (ABCA1), ABC transporter G5 (ABCG5), and ABC transporter G8 (ABCG8) in the jejunum, and of ABCG5 and ABCG8 in the liver, but the magnitude of this increase was generally less if the mice were given SCH 58053. We conclude that the inhibition of cholesterol absorption effected by this new class of agents is not mediated via changes in either the size or composition of the intestinal bile acid pool, or the level of mRNA expression of proteins that facilitate cholesterol efflux from the enterocyte, but rather may involve disruption of the uptake of luminal sterol across the microvillus membrane.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Azetidinas/farmacologia , Colesterol na Dieta/metabolismo , Enterócitos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Lipoproteínas/genética , Compostos de Espiro/farmacologia , Transportador 1 de Cassete de Ligação de ATP , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Absorção/efeitos dos fármacos , Animais , Anticolesterolemiantes/farmacologia , Ácidos e Sais Biliares , Enterócitos/metabolismo , Feminino , Camundongos , Estrutura Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
J Biol Chem ; 277(21): 18793-800, 2002 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-11901146

RESUMO

Mutations in the ATP-binding cassette (ABC) transporters ABCG5 and ABCG8 have recently been shown to cause the autosomal recessive disorder sitosterolemia. Here we demonstrate that the ABCG5 and ABCG8 genes are direct targets of the oxysterol receptors liver X receptor (LXR) alpha and LXRbeta. Diets containing high cholesterol markedly increased the expression of ABCG5/G8 mRNA in mouse liver and intestine. This increase was also observed using synthetic ligands of LXR and its heterodimeric partner, the retinoid X receptor. In situ hybridization analyses of tissues from LXR agonist-treated mice revealed that ABCG5/G8 mRNA is located in hepatocytes and enterocytes and is increased upon LXR activation. In addition, expression of the LXR target gene ABCA1, previously implicated in the control of cholesterol absorption, was also dramatically up-regulated in jejunal enterocytes upon exposure to LXR agonists. These changes in ABC transporter gene expression were not observed in mice lacking LXRs. Furthermore, in the rat hepatoma cell line FTO2B, LXR-dependent transcription of the ABCG5/G8 genes was cycloheximide-resistant, indicating that these genes are directly regulated by LXRs. The addition of ABCG5 and ABCG8 to the growing list of LXR target genes further supports the notion that LXRs serve as sterol sensors to coordinately regulate sterol catabolism, storage, efflux, and elimination.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Lipoproteínas/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptores do Ácido Retinoico/fisiologia , Receptores dos Hormônios Tireóideos/fisiologia , Transportador 1 de Cassete de Ligação de ATP , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Sequência de Bases , Sondas de DNA , Proteínas de Ligação a DNA , Lipoproteínas/genética , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Nucleares Órfãos , RNA Mensageiro/genética , Ratos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA