Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629811

RESUMO

Background: Ketamine has emerged as one of the most promising therapies for treatment-resistant depression. However, inter-individual variability in response to ketamine is still not well understood and it is unclear how ketamine's molecular mechanisms connect to its neural and behavioral effects. Methods: We conducted a single-blind placebo-controlled study, with participants blinded to their treatment condition. 40 healthy participants received acute ketamine (initial bolus 0.23 mg/kg, continuous infusion 0.58 mg/kg/hr). We quantified resting-state functional connectivity via data-driven global brain connectivity and related it to individual ketamine-induced symptom variation and cortical gene expression targets. Results: We found that: (i) both the neural and behavioral effects of acute ketamine are multi-dimensional, reflecting robust inter-individual variability; (ii) ketamine's data-driven principal neural gradient effect matched somatostatin (SST) and parvalbumin (PVALB) cortical gene expression patterns in humans, while the mean effect did not; and (iii) behavioral data-driven individual symptom variation mapped onto distinct neural gradients of ketamine, which were resolvable at the single-subject level. Conclusions: These results highlight the importance of considering individual behavioral and neural variation in response to ketamine. They also have implications for the development of individually precise pharmacological biomarkers for treatment selection in psychiatry. Funding: This study was supported by NIH grants DP5OD012109-01 (A.A.), 1U01MH121766 (A.A.), R01MH112746 (J.D.M.), 5R01MH112189 (A.A.), 5R01MH108590 (A.A.), NIAAA grant 2P50AA012870-11 (A.A.); NSF NeuroNex grant 2015276 (J.D.M.); Brain and Behavior Research Foundation Young Investigator Award (A.A.); SFARI Pilot Award (J.D.M., A.A.); Heffter Research Institute (Grant No. 1-190420) (FXV, KHP); Swiss Neuromatrix Foundation (Grant No. 2016-0111) (FXV, KHP); Swiss National Science Foundation under the framework of Neuron Cofund (Grant No. 01EW1908) (KHP); Usona Institute (2015 - 2056) (FXV). Clinical trial number: NCT03842800.


Ketamine is a widely used anesthetic as well as a popular illegal recreational drug. Recently, it has also gained attention as a potential treatment for depression, particularly in cases that don't respond to conventional therapies. However, individuals can vary in their response to ketamine. For example, the drug can alter some people's perception, such as seeing objects as larger or small than they are, while other individuals are unaffected. Although a single dose of ketamine was shown to improve depression symptoms in approximately 65% of patients, the treatment does not work for a significant portion of patients. Understanding why ketamine does not work for everyone could help to identify which patients would benefit most from the treatment. Previous studies investigating ketamine as a treatment for depression have typically included a group of individuals given ketamine and a group given a placebo drug. Assuming people respond similarly to ketamine, the responses in each group were averaged and compared to one another. However, this averaging of results may have masked any individual differences in response to ketamine. As a result, Moujaes et al. set out to investigate whether individuals show differences in brain activity and behavior in response to ketamine. Moujaes et al. monitored the brain activity and behavior of 40 healthy individuals that were first given a placebo drug and then ketamine. The results showed that brain activity and behavior varied significantly between individuals after ketamine administration. Genetic analysis revealed that different gene expression patterns paired with differences in ketamine response in individuals ­ an effect that was hidden when the results were averaged. Ketamine also caused greater differences in brain activity and behavior between individuals than other drugs, such as psychedelics, suggesting ketamine generates a particularly complex response in people. In the future, extending these findings in healthy individuals to those with depression will be crucial for determining whether differences in response to ketamine align with how effective ketamine treatment is for an individual.


Assuntos
Ketamina , Humanos , Ketamina/farmacologia , Método Simples-Cego , Antidepressivos/farmacologia , Encéfalo
2.
Elife ; 72018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30355445

RESUMO

Background: Lysergic acid diethylamide (LSD) has agonist activity at various serotonin (5-HT) and dopamine receptors. Despite the therapeutic and scientific interest in LSD, specific receptor contributions to its neurobiological effects remain unknown. Methods: We therefore conducted a double-blind, randomized, counterbalanced, cross-over studyduring which 24 healthy human participants received either (i) placebo+placebo, (ii) placebo+LSD (100 µg po), or (iii) Ketanserin, a selective 5-HT2A receptor antagonist,+LSD. We quantified resting-state functional connectivity via a data-driven global brain connectivity method and compared it to cortical gene expression maps. Results: LSD reduced associative, but concurrently increased sensory-somatomotor brain-wide and thalamic connectivity. Ketanserin fully blocked the subjective and neural LSD effects. Whole-brain spatial patterns of LSD effects matched 5-HT2A receptor cortical gene expression in humans. Conclusions: Together, these results strongly implicate the 5-HT2A receptor in LSD's neuropharmacology. This study therefore pinpoints the critical role of 5-HT2A in LSD's mechanism, which informs its neurobiology and guides rational development of psychedelic-based therapeutics. Funding: Funded by the Swiss National Science Foundation, the Swiss Neuromatrix Foundation, the Usona Institute, the NIH, the NIAA, the NARSAD Independent Investigator Grant, the Yale CTSA grant, and the Slovenian Research Agency. Clinical trial number: NCT02451072


The psychedelic drug LSD alters thinking and perception. Users can experience hallucinations, in which they, for example, see things that are not there. Colors, sounds and objects can appear distorted, and time can seem to speed up or slow down. These changes bear some resemblance to the changes in thinking and perception that occur in certain psychiatric disorders, such as schizophrenia. Studying how LSD affects the brain could thus offer insights into the mechanisms underlying these conditions. There is also evidence that LSD itself could help to reduce the symptoms of depression and anxiety disorders. Preller et al. have now used brain imaging to explore the effects of LSD on the brains of healthy volunteers. This revealed that LSD reduced communication among brain areas involved in planning and decision-making, but it increased communication between areas involved in sensation and movement. Volunteers whose brains showed the most communication between sensory and movement areas also reported the strongest effects of LSD on their thinking and perception. Preller et al. also found that another drug called Ketanserin prevented LSD from altering how different brain regions communicate. It also prevented LSD from inducing changes in thinking and perception. Ketanserin blocks a protein called the serotonin 2A receptor, which is activated by a brain chemical called serotonin that, amongst other roles, helps to regulate mood. By mapping the location of the gene that produces the serotonin 2A receptor, Preller et al. showed that the receptor is present in brain regions that show altered communication after LSD intake, therefore pinpointing the importance of this receptor in the effects of LSD. Psychiatric disorders that produce psychotic symptoms affect vast numbers of people worldwide. Further research into how LSD affects the brain could help us to better understand how such symptoms arise, and may also lead to the development of more effective treatments for a range of mental health conditions.


Assuntos
Alucinógenos/metabolismo , Dietilamida do Ácido Lisérgico/metabolismo , Vias Neurais/efeitos dos fármacos , Antagonistas do Receptor 5-HT2 de Serotonina/metabolismo , Tálamo/efeitos dos fármacos , Adulto , Estudos Cross-Over , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Masculino , Placebos/administração & dosagem , Adulto Jovem
3.
Psychiatr Danub ; 22(3): 446-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20856190

RESUMO

BACKGROUND: The main clinical feature of dementia in Parkinson's disease is a dysexecutive syndrome. The neuropathology of PD dementia (PDD) is likely multifactorial and affects several neuronal populations. There is evidence that Parkinson's disease dementia is associated with a cholinergic deficit, supporting the therapeutic role of cholinesterase inhibitors, which are already first-line agents in the treatment of Alzheimer's disease. The paper includes short report on a pilot study with description of cognitive and imaging profiles in patients with mild to moderate stage of Parkinson disease dementia (PDD). SUBJECTS AND METHODS: A random sample of 16 patients with clinical diagnostic criteria for probable PDD was included in the study. Patients were characterized with mild to moderate cognitive decline slightly depressive mood and moderate motor performance. Brain perfusion [(99m)Tc]ECD / SPECT and structural MRI with emphasis on evaluation of the degree of cortical atrophy and the medial temporal atrophy index was performed. All patients had detailed neuropsychological evaluation using a "cognitive process approach". Neuropsychological data were correlated voxel-wise with normalized brain perfusion images, creating whole-brain correlation maps. CONCLUSIONS: Previously reported generalized cognitive impairment in PDD with predominant executive, visouspatial and attentional deficits was confirmed. Performance on specific cognitive measures was correlated with perfusion brain SPECT findings. It could be speculated that different pathological mechanisms underlie widespread significant brain perfusion decrements in temporal, parietal and frontal regions.


Assuntos
Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/diagnóstico por imagem , Demência/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Idoso , Antiparkinsonianos/uso terapêutico , Atrofia , Mapeamento Encefálico , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Inibidores da Colinesterase/uso terapêutico , Cisteína/análogos & derivados , Demência/tratamento farmacológico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos/estatística & dados numéricos , Compostos de Organotecnécio , Doença de Parkinson/tratamento farmacológico , Projetos Piloto , Psicometria , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA