Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Redox Res ; 92023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37900981

RESUMO

The NADPH oxidase 1 (NOX1) complex formed by proteins NOX1, p22phox, NOXO1, NOXA1, and RAC1 plays an important role in the generation of superoxide and other reactive oxygen species (ROS) which are involved in normal and pathological cell functions due to their effects on diverse cell signaling pathways. Cell migration and invasiveness are at the origin of tumor metastasis during cancer progression which involves a process of cellular de-differentiation known as the epithelial-mesenchymal transition (EMT). During EMT cells lose their polarized epithelial phenotype and express mesenchymal marker proteins that enable cytoskeletal rearrangements promoting cell migration, expression and activation of matrix metalloproteinases (MMPs), tissue remodeling, and cell invasion during metastasis. In this work, we explored the importance of the peroxiredoxin 6 (PRDX6)-NOX1 enzyme interaction leading to NOXA1 protein stabilization and increased levels of superoxide produced by NOX in hepatocarcinoma cells. This increase was accompanied by higher levels of N-cadherin and MMP2, correlating with a greater capacity for cell migration and invasiveness of SNU475 hepatocarcinoma cells. The increase in superoxide and the associated downstream effects on cancer progression were suppressed when phospholipase A2 or peroxidase activities of PRDX6 were abolished by site-directed mutagenesis, reinforcing the importance of these catalytic activities in supporting NOX1-based superoxide generation. Overall, these results demonstrate a clear functional cooperation between NOX1 and PRDX6 catalytic activities which generate higher levels of ROS production, resulting in a more aggressive tumor phenotype.

2.
Antioxidants (Basel) ; 12(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37371884

RESUMO

Peroxiredoxin 6 (PRDX6), the only mammalian 1-Cys member of the peroxiredoxin family, has peroxidase, phospholipase A2 (PLA2), and lysophosphatidylcholine (LPC) acyltransferase (LPCAT) activities. It has been associated with tumor progression and cancer metastasis, but the mechanisms involved are not clear. We constructed an SNU475 hepatocarcinoma cell line knockout for PRDX6 to study the processes of migration and invasiveness in these mesenchymal cells. They showed lipid peroxidation but inhibition of the NRF2 transcriptional regulator, mitochondrial dysfunction, metabolic reprogramming, an altered cytoskeleton, down-regulation of PCNA, and a diminished growth rate. LPC regulatory action was inhibited, indicating that loss of both the peroxidase and PLA2 activities of PRDX6 are involved. Upstream regulators MYC, ATF4, HNF4A, and HNF4G were activated. Despite AKT activation and GSK3ß inhibition, the prosurvival pathway and the SNAI1-induced EMT program were aborted in the absence of PRDX6, as indicated by diminished migration and invasiveness, down-regulation of bottom-line markers of the EMT program, MMP2, cytoskeletal proteins, and triggering of the "cadherin switch". These changes point to a role for PRDX6 in tumor development and metastasis, so it can be considered a candidate for antitumoral therapies.

3.
Redox Biol ; 37: 101737, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33035814

RESUMO

Peroxiredoxin 6 (PRDX6) has been associated with tumor progression and cancer metastasis. Its acting on phospholipid hydroperoxides and its phospholipase-A2 activity are unique among the peroxiredoxin family and add complexity to its action mechanisms. As a first step towards the study of PRDX6 involvement in cancer, we have constructed a human hepatocarcinoma HepG2PRDX6-/- cell line using the CRISPR/Cas9 technique and have characterized the cellular response to lack of PRDX6. Applying quantitative global and redox proteomics, flow cytometry, in vivo extracellular flow analysis, Western blot and electron microscopy, we have detected diminished respiratory capacity, downregulation of mitochondrial proteins and altered mitochondrial morphology. Autophagic vesicles were abundant while the unfolded protein response (UPR), HIF1A and NRF2 transcription factors were not activated, despite increased levels of p62/SQSTM1 and reactive oxygen species (ROS). Insulin receptor (INSR), 3-phosphoinositide-dependent protein kinase 1 (PDPK1), uptake of glucose and hexokinase-2 (HK2) decreased markedly while nucleotide biosynthesis, lipogenesis and synthesis of long chain polyunsaturated fatty acids (LC-PUFA) increased. 254 Cys-peptides belonging to 202 proteins underwent significant redox changes. PRDX6 knockout had an antiproliferative effect due to cell cycle arrest at G2/M transition, without signs of apoptosis. Loss of PLA2 may affect the levels of specific lipids altering lipid signaling pathways, while loss of peroxidase activity could induce redox changes at critical sensitive cysteine residues in key proteins. Oxidation of specific cysteines in Proliferating Cell Nuclear Antigen (PCNA) could interfere with entry into mitosis. The GSH/Glutaredoxin system was downregulated likely contributing to these redox changes. Altogether the data demonstrate that loss of PRDX6 slows down cell division and alters metabolism and mitochondrial function, so that cell survival depends on glycolysis to lactate for ATP production and on AMPK-independent autophagy to obtain building blocks for biosynthesis. PRDX6 is an important link in the chain of elements connecting redox homeostasis and proliferation.


Assuntos
Pontos de Checagem do Ciclo Celular , Mitocôndrias , Peroxirredoxina VI , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Células Hep G2 , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Peroxirredoxina VI/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Redox Biol ; 36: 101510, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32593127

RESUMO

Cancer cells have unlimited replicative potential, insensitivity to growth-inhibitory signals, evasion of apoptosis, cellular stress, and sustained angiogenesis, invasiveness and metastatic potential. Cancer cells adequately adapt cell metabolism and integrate several intracellular and redox signaling to promote cell survival in an inflammatory and hypoxic microenvironment in order to maintain/expand tumor phenotype. The administration of tyrosine kinase inhibitor (TKI) constitutes the recommended therapeutic strategy in different malignancies at advanced stages. There are important interrelationships between cell stress, redox status, mitochondrial function, metabolism and cellular signaling pathways leading to cell survival/death. The induction of apoptosis and cell cycle arrest widely related to the antitumoral properties of TKIs result from tightly controlled events involving different cellular compartments and signaling pathways. The aim of the present review is to update the most relevant studies dealing with the impact of TKI treatment on cell function. The induction of endoplasmic reticulum (ER) stress and Ca2+ disturbances, leading to alteration of mitochondrial function, redox status and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) signaling pathways that involve cell metabolism reprogramming in cancer cells will be covered. Emphasis will be given to studies that identify key components of the integrated molecular pattern including receptor tyrosine kinase (RTK) downstream signaling, cell death and mitochondria-related events that appear to be involved in the resistance of cancer cells to TKI treatments.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Apoptose , Autofagia , Humanos , Mitocôndrias , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt , Microambiente Tumoral
5.
Antioxidants (Basel) ; 8(11)2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652719

RESUMO

Peroxiredoxin 6 (Prdx6) is the only member of 1-Cys subfamily of peroxiredoxins in human cells. It is the only Prdx acting on phospholipid hydroperoxides possessing two additional sites with phospholipase A2 (PLA2) and lysophosphatidylcholine-acyl transferase (LPCAT) activities. There are contrasting reports on the roles and mechanisms of multifunctional Prdx6 in several pathologies and on its sensitivity to, and influence on, the redox environment. We have down-regulated Prdx6 with specific siRNA in hepatoblastoma HepG2 cells to study its role in cell proliferation, redox homeostasis, and metabolic programming. Cell proliferation and cell number decreased while cell volume increased; import of glucose and nucleotide biosynthesis also diminished while polyamines, phospholipids, and most glycolipids increased. A proteomic quantitative analysis suggested changes in membrane arrangement and vesicle trafficking as well as redox changes in enzymes of carbon and glutathione metabolism, pentose-phosphate pathway, citrate cycle, fatty acid metabolism, biosynthesis of aminoacids, and Glycolysis/Gluconeogenesis. Specific redox changes in Hexokinase-2 (HK2), Prdx6, intracellular chloride ion channel-1 (CLIC1), PEP-carboxykinase-2 (PCK2), and 3-phosphoglycerate dehydrogenase (PHGDH) are compatible with the metabolic remodeling toward a predominant gluconeogenic flow from aminoacids with diversion at 3-phospohglycerate toward serine and other biosynthetic pathways thereon and with cell cycle arrest at G1/S transition.

6.
Redox Biol ; 19: 52-61, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30107295

RESUMO

Loss of brain glutathione has been associated with cognitive decline and neuronal death during aging and neurodegenerative diseases. However, whether decreased glutathione precedes or follows neuronal dysfunction has not been unambiguously elucidated. Previous attempts to address this issue were approached by fully eliminating glutathione, a strategy causing abrupt lethality or premature neuronal death that led to multiple interpretations. To overcome this drawback, here we aimed to moderately decrease glutathione content by genetically knocking down the rate-limiting enzyme of glutathione biosynthesis in mouse neurons in vivo. Biochemical and morphological analyses of the brain revealed a modest glutathione decrease and redox stress throughout the hippocampus, although neuronal dendrite disruption and glial activation was confined to the hippocampal CA1 layer. Furthermore, the behavioral characterization exhibited signs consistent with cognitive impairment. These results indicate that the hippocampal neurons require a large pool of glutathione to sustain dendrite integrity and cognitive function.


Assuntos
Cognição , Dendritos/metabolismo , Glutationa/metabolismo , Hipocampo/fisiologia , Neurônios/metabolismo , Animais , Dendritos/patologia , Hipocampo/citologia , Hipocampo/patologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/patologia , Oxirredução , Estresse Oxidativo
7.
Biomaterials ; 113: 18-30, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27810639

RESUMO

Spinal cord injury (SCI) suffers from a lack of effective therapeutic strategies. Animal models of acute SCI have provided evidence that transplantation of ependymal stem/progenitor cells of the spinal cord (epSPCs) induces functional recovery, while systemic administration of the anti-inflammatory curcumin provides neuroprotection. However, functional recovery from chronic stage SCI requires additional enhancements in available therapeutic strategies. Herein, we report on a combination treatment for SCI using epSPCs and a pH-responsive polymer-curcumin conjugate. The incorporation of curcumin in a pH-responsive polymeric carrier mainchain, a polyacetal (PA), enhances blood bioavailability, stability, and provides a means for highly localized delivery. We find that PA-curcumin enhances neuroprotection, increases axonal growth, and can improve functional recovery in acute SCI. However, when combined with epSPCs, PA-curcumin also enhances functional recovery in a rodent model of chronic SCI. This suggests that combination therapy may be an exciting new therapeutic option for the treatment of chronic SCI in humans.


Assuntos
Acetais/química , Anti-Inflamatórios não Esteroides/uso terapêutico , Curcumina/uso terapêutico , Preparações de Ação Retardada/química , Polímeros/química , Traumatismos da Medula Espinal/terapia , Medula Espinal/efeitos dos fármacos , Transplante de Células-Tronco , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Células Cultivadas , Curcumina/administração & dosagem , Curcumina/química , Feminino , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Transplante de Células-Tronco/métodos
8.
Biochem J ; 467(2): 303-10, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25670069

RESUMO

DnaJ-1 or hsp40/hdj-1 (DJ1) is a multi-functional protein whose mutations cause autosomal recessive early-onset Parkinson's disease (PD). DJ1 loss of function disrupts mitochondrial function, but the signalling pathway, whereby it interferes with energy metabolism, is unknown. In the present study, we found that mouse embryonic fibroblasts (MEFs) obtained from DJ1-null (dj1-/-) mice showed higher glycolytic rate than those from wild-type (WT) DJ1 (dj1+/+). This effect could be counteracted by the expression of the full-length cDNA encoding the WT DJ1, but not its DJ1-L166P mutant form associated with PD. Loss of DJ1 increased hypoxia-inducible factor-1α (Hif1α) protein abundance and cell proliferation. To understand the molecular mechanism responsible for these effects, we focused on phosphatase and tensin homologue deleted on chromosome 10 (PTEN)-induced protein kinase-1 (Pink1), a PD-associated protein whose loss was recently reported to up-regulate glucose metabolism and to sustain cell proliferation [Requejo-Aguilar et al. (2014) Nat. Commun. 5, 4514]. Noticeably, we found that the alterations in glycolysis, Hif1α and proliferation of DJ1-deficient cells were abrogated by the expression of Pink1. Moreover, we found that loss of DJ1 decreased pink1 mRNA and Pink1 protein levels and that DJ1, by binding with Foxo3a (forkhead box O3a) transcription factor, directly interacted with the pink1 promoter stimulating its transcriptional activity. These results indicate that DJ1 regulates cell metabolism and proliferation through Pink1.


Assuntos
Proliferação de Células/fisiologia , Fibroblastos/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Glicólise/fisiologia , Proteínas Oncogênicas/metabolismo , Peroxirredoxinas/metabolismo , Proteínas Quinases/biossíntese , Transcrição Gênica/fisiologia , Regulação para Cima/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Glucose/genética , Glucose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Knockout , Proteínas Oncogênicas/genética , Peroxirredoxinas/genética , Proteína Desglicase DJ-1 , Proteínas Quinases/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA