Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
IJID Reg ; 7: 110-115, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37009571

RESUMO

Objective: The aim of this study was to determine the prevalence of high-risk (HR) and vaccine-type human papillomavirus (HPV) infection among Thai schoolgirls who were not included in the national HPV immunization program. Methods: Cross-sectional surveys were conducted among grade 10 (15-16 years old) and grade 12 (17-18 years old) schoolgirls in two provinces of Thailand. Urine samples were collected using the Colli-PeeⓇ device from November 2018 to February 2019. The samples were initially tested using CobasⓇ 4800. Subsequently, all Cobas-positive samples and 1:1 matched Cobas-negative samples were tested by AnyplexⓇ assay. Prevalences of any HPV, any HR HPV, vaccine-type HPV, and individual HR HPV types were estimated by school grade. Results: Prevalences of any HPV and any HR HPV were 11.6% and 8.6% for grade 10, and 18.5% and 12.4% for grade 12 schoolgirls, respectively. Prevalences of bivalent vaccine-type HPV infection in grades 10 and 12 were 3.4% and 4.5%, respectively. Prevalences of quadrivalent and nonavalent vaccine-type HPV infections were 4.0%/6.6% and 6.4%/10.4% in grades 10 and 12, respectively. HPV16 was the most common type detected, followed by HPV58, 51, and 52. Circulating HR HPV types were similar between the school grades. Conclusion: A substantial burden of HR HPV infections was found among unvaccinated high school girls in Thailand.

2.
PLoS One ; 17(4): e0267294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482803

RESUMO

Human papillomavirus (HPV) is a common infection principally spread through sexual activity. Most HPV infections are asymptomatic and resolve spontaneously. However, persistent infection may progress to cervical cancer. Highly efficacious HPV vaccines have been available since 2006, yet uptake into national programs has been slow in part due to cost. WHO guidelines call for a two-dose (0,6 month) schedule for girls 9-14 years of age. Post-hoc analyses of randomized trials have found high vaccine effectiveness following a single dose of vaccine. In order to provide additional data on the potential impact of single dose HPV vaccination in a real-world setting, we are conducting an effectiveness study among Thai schoolgirls. This is an observational study of a single dose (SD) or two doses (2D) of the bivalent HPV vaccine CERVARIX® (GlaxoSmithKline plc.) administered in a school-based program to 8-9,000 Grade 8 female students in two provinces of Thailand beginning in 2018; one province is assigned the SD, and the other the standard 2D regimen. The reduction in HPV vaccine-type prevalence will be assessed in each province two and four years after vaccination by comparing HPV prevalence in urine samples obtained through cross-sectional surveys of the immunized grade cohort as they age and compared to a historical "baseline" HPV prevalence of same age students.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Estudos Transversais , Feminino , Humanos , Masculino , Papillomaviridae , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/prevenção & controle , Estudantes , Tailândia/epidemiologia
3.
Elife ; 102021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533134

RESUMO

A gene signature was previously found to be correlated with mosaic adenovirus 26 vaccine protection in simian immunodeficiency virus and simian-human immunodeficiency virus challenge models in non-human primates. In this report, we investigated the presence of this signature as a correlate of reduced risk in human clinical trials and potential mechanisms of protection. The absence of this gene signature in the DNA/rAd5 human vaccine trial, which did not show efficacy, strengthens our hypothesis that this signature is only enriched in studies that demonstrated protection. This gene signature was enriched in the partially effective RV144 human trial that administered the ALVAC/protein vaccine, and we find that the signature associates with both decreased risk of HIV-1 acquisition and increased vaccine efficacy (VE). Total RNA-seq in a clinical trial that used the same vaccine regimen as the RV144 HIV vaccine implicated antibody-dependent cellular phagocytosis (ADCP) as a potential mechanism of vaccine protection. CITE-seq profiling of 53 surface markers and transcriptomes of 53,777 single cells from the same trial showed that genes in this signature were primarily expressed in cells belonging to the myeloid lineage, including monocytes, which are major effector cells for ADCP. The consistent association of this transcriptome signature with VE represents a tool both to identify potential mechanisms, as with ADCP here, and to screen novel approaches to accelerate the development of new vaccine candidates.


Assuntos
Vacinas contra a AIDS/uso terapêutico , Perfilação da Expressão Gênica , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Monócitos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Transcriptoma , Vacinas de DNA/uso terapêutico , Vacinas contra a AIDS/efeitos adversos , Ensaios Clínicos como Assunto , Bases de Dados Genéticas , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Imunogenicidade da Vacina , Monócitos/imunologia , Monócitos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA-Seq , Análise de Célula Única , Fatores de Tempo , Resultado do Tratamento , Vacinação , Vacinas de DNA/efeitos adversos
4.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30209165

RESUMO

To date, six vaccine strategies have been evaluated in clinical trials for their efficacy at inducing protective immune responses against HIV infection. However, only the ALVAC-HIV/AIDSVAX B/E vaccine (RV144 trial) has demonstrated protection, albeit modestly (31%; P = 0.03). One potential correlate of protection was a low-frequency HIV-specific CD4 T cell population with diverse functionality. Although CD4 T cells, particularly T follicular helper (Tfh) cells, are critical for effective antibody responses, most studies involving HIV vaccines have focused on humoral immunity or CD8 T cell effector responses, and little is known about the functionality and frequency of vaccine-induced CD4 T cells. We therefore assessed responses from several phase I/II clinical trials and compared them to responses to natural HIV-1 infection. We found that all vaccines induced a lower magnitude of HIV-specific CD4 T cell responses than that observed for chronic infection. Responses differed in functionality, with a CD40 ligand (CD40L)-dominated response and more Tfh cells after vaccination, whereas chronic HIV infection provoked tumor necrosis factor alpha (TNF-α)-dominated responses. The vaccine delivery route further impacted CD4 T cells, showing a stronger Th1 polarization after dendritic cell delivery than after intramuscular vaccination. In prime/boost regimens, the choice of prime and boost influenced the functional profile of CD4 T cells to induce more or less polyfunctionality. In summary, vaccine-induced CD4 T cell responses differ remarkably between vaccination strategies, modes of delivery, and boosts and do not resemble those induced by chronic HIV infection. Understanding the functional profiles of CD4 T cells that best facilitate protective antibody responses will be critical if CD4 T cell responses are to be considered a clinical trial go/no-go criterion.IMPORTANCE Only one HIV-1 candidate vaccine strategy has shown protection, albeit marginally (31%), against HIV-1 acquisition, and correlates of protection suggested that a multifunctional CD4 T cell immune response may be important for this protective effect. Therefore, the functional phenotypes of HIV-specific CD4 T cell responses induced by different phase I and phase II clinical trials were assessed to better show how different vaccine strategies influence the phenotype and function of HIV-specific CD4 T cell immune responses. The significance of this research lies in our comprehensive comparison of the compositions of the T cell immune responses to different HIV vaccine modalities. Specifically, our work allows for the evaluation of vaccination strategies in terms of their success at inducing Tfh cell populations.


Assuntos
Vacinas contra a AIDS/classificação , Vacinas contra a AIDS/imunologia , Linfócitos T CD8-Positivos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Vacinas contra a AIDS/genética , Anticorpos Neutralizantes/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Vacinação
5.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29743361

RESUMO

The phase III RV144 human immunodeficiency virus (HIV) vaccine trial conducted in Thailand remains the only study to show efficacy in decreasing the HIV acquisition risk. In Thailand, circulating recombinant forms of HIV clade A/E (CRF01_AE) predominate; in such viruses, env originates from clade E (HIV-E). We constructed a simian-human immunodeficiency virus (SHIV) chimera carrying env isolated from an RV144 placebo recipient in the SHIV-1157ipd3N4 backbone. The latter contains long terminal repeats (LTRs) with duplicated NF-κB sites, thus resembling HIV LTRs. We devised a novel strategy to adapt the parental infectious molecular clone (IMC), R5 SHIV-E1, to rhesus macaques: the simultaneous depletion of B and CD8+ cells followed by the intramuscular inoculation of proviral DNA and repeated administrations of cell-free virus. High-level viremia and CD4+ T-cell depletion ensued. Passage 3 virus unexpectedly caused acute, irreversible CD4+ T-cell loss; the partially adapted SHIV had become dual tropic. Virus and IMCs with exclusive R5 tropism were reisolated from earlier passages, combined, and used to complete adaptation through additional macaques. The final isolate, SHIV-E1p5, remained solely R5 tropic. It had a tier 2 neutralization phenotype, was mucosally transmissible, and was pathogenic. Deep sequencing revealed 99% Env amino acid sequence conservation; X4-only and dual-tropic strains had evolved independently from an early branch of parental SHIV-E1. To conclude, our primate model data reveal that SHIV-E1p5 recapitulates important aspects of HIV transmission and pathobiology in humans.IMPORTANCE Understanding the protective principles that lead to a safe, effective vaccine against HIV in nonhuman primate (NHP) models requires test viruses that allow the evaluation of anti-HIV envelope responses. Reduced HIV acquisition risk in RV144 has been linked to nonneutralizing IgG antibodies with a range of effector activities. Definitive experiments to decipher the mechanisms of the partial protection observed in RV144 require passive-immunization studies in NHPs with a relevant test virus. We have generated such a virus by inserting env from an RV144 placebo recipient into a SHIV backbone with HIV-like LTRs. The final SHIV-E1p5 isolate, grown in rhesus monkey peripheral blood mononuclear cells, was mucosally transmissible and pathogenic. Earlier SHIV-E passages showed a coreceptor switch, again mimicking HIV biology in humans. Thus, our series of SHIV-E strains mirrors HIV transmission and disease progression in humans. SHIV-E1p5 represents a biologically relevant tool to assess prevention strategies.


Assuntos
Produtos do Gene env , Infecções por HIV/virologia , HIV-1/patogenicidade , Leucócitos Mononucleares/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Tropismo , Animais , Humanos , Macaca mulatta , Provírus/genética , Receptores CCR5/metabolismo , Tailândia , Carga Viral , Viremia , Replicação Viral , Voluntários
6.
PLoS Pathog ; 14(2): e1006888, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29474461

RESUMO

The concerns raised from adenovirus 5 (Ad5)-based HIV vaccine clinical trials, where excess HIV infections were observed in some vaccine recipients, have highlighted the importance of understanding host responses to vaccine vectors and the HIV susceptibility of vector-specific CD4 T cells in HIV vaccination. Our recent study reported that human Ad5-specific CD4 T cells induced by Ad5 vaccination (RV156A trial) are susceptible to HIV. Here we further investigated the HIV susceptibility of vector-specific CD4 T cells induced by ALVAC, a canarypox viral vector tested in the Thai trial RV144, as compared to Ad5 vector-specific CD4 T cells in the HVTN204 trial. We showed that while Ad5 vector-specific CD4 T cells were readily susceptible to HIV, ALVAC-specific CD4 T cells in RV144 PBMC were substantially less susceptible to both R5 and X4 HIV in vitro. The lower HIV susceptibility of ALVAC-specific CD4 T cells was associated with the reduced surface expression of HIV entry co-receptors CCR5 and CXCR4 on these cells. Phenotypic analyses identified that ALVAC-specific CD4 T cells displayed a strong Th1 phenotype, producing higher levels of IFN-γ and CCL4 (MIP-1ß) but little IL-17. Of interest, ALVAC and Ad5 vectors induced distinct profiles of vector-specific CD8 vs. CD4 T-cell proliferative responses in PBMC, with ALVAC preferentially inducing CD8 T-cell proliferation, while Ad5 vector induced CD4 T-cell proliferation. Depletion of ALVAC-, but not Ad5-, induced CD8 T cells in PBMC led to a modest increase in HIV infection of vector-specific CD4 T cells, suggesting a role of ALVAC-specific CD8 T cells in protecting ALVAC-specific CD4 T cells from HIV. Taken together, our data provide strong evidence for distinct HIV susceptibility of CD4 T cells induced by different vaccine vectors and highlight the importance of better evaluating anti-vector responses in HIV vaccination.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos T CD4-Positivos/imunologia , Vetores Genéticos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vacinas contra a AIDS/administração & dosagem , Adenoviridae/genética , Adenoviridae/imunologia , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Suscetibilidade a Doenças/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/genética
7.
J Virol ; 91(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28701403

RESUMO

The RV144 HIV vaccine trial included a recombinant HIV glycoprotein 120 (gp120) construct fused to a small portion of herpes simplex virus 1 (HSV-1) glycoprotein D (gD) so that the first 40 amino acids of gp120 were replaced by the signal sequence and the first 27 amino acids of the mature form of gD. This region of gD contains most of the binding site for HVEM, an HSV receptor important for virus infection of epithelial cells and lymphocytes. RV144 induced antibodies to HIV that were partially protective against infection, as well as antibodies to HSV. We derived monoclonal antibodies (MAbs) from peripheral blood B cells of recipients of the RV144 HIV vaccine and showed that these antibodies neutralized HSV-1 infection in cells expressing HVEM, but not the other major virus receptor, nectin-1. The MAbs mediated antibody-dependent cellular cytotoxicity (ADCC), and mice that received the MAbs and were then challenged by corneal inoculation with HSV-1 had reduced eye disease, shedding, and latent infection. To our knowledge, this is the first description of MAbs derived from human recipients of a vaccine that specifically target the HVEM binding site of gD. In summary, we found that monoclonal antibodies derived from humans vaccinated with the HVEM binding domain of HSV-1 gD (i) neutralized HSV-1 infection in a cell receptor-specific manner, (ii) mediated ADCC, and (iii) reduced ocular disease in virus-infected mice.IMPORTANCE Herpes simplex virus 1 (HSV-1) causes cold sores and neonatal herpes and is a leading cause of blindness. Despite many trials, no HSV vaccine has been approved. Nectin-1 and HVEM are the two major cellular receptors for HSV. These receptors are expressed at different levels in various tissues, and the role of each receptor in HSV pathogenesis is not well understood. We derived human monoclonal antibodies from persons who received the HIV RV144 vaccine that contained the HVEM binding domain of HSV-1 gD fused to HIV gp120. These antibodies were able to specifically neutralize HSV-1 infection in vitro via HVEM. Furthermore, we showed for the first time that HVEM-specific HSV-1 neutralizing antibodies protect mice from HSV-1 eye disease, indicating the critical role of HVEM in HSV-1 ocular infection.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais/imunologia , Oftalmopatias/prevenção & controle , Proteína gp120 do Envelope de HIV/imunologia , Herpes Simples/prevenção & controle , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Simplexvirus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular , Oftalmopatias/virologia , Feminino , Proteína gp120 do Envelope de HIV/genética , Herpes Simples/imunologia , Herpes Simples/virologia , Humanos , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Simplexvirus/genética , Proteínas do Envelope Viral/genética
8.
PLoS One ; 12(5): e0176428, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28493891

RESUMO

BACKGROUND: In the HIV-1 vaccine trial RV144, ALVAC-HIV prime with an AIDSVAX® B/E boost reduced HIV-1 acquisition by 31% at 42 months post first vaccination. The bivalent AIDSVAX® B/E vaccine contains two gp120 envelope glycoproteins, one from the subtype B HIV-1 MN isolate and one from the subtype CRF01_AE A244 isolate. Each envelope glycoprotein harbors a highly conserved 27-amino acid HSV-1 glycoprotein D (gD) tag sequence that shares 93% sequence identity with the HSV-2 gD sequence. We assessed whether vaccine-induced anti-gD antibodies protected females against HSV-2 acquisition in RV144. METHODS: Of the women enrolled in RV144, 777 vaccine and 807 placebo recipients were eligible and randomly selected according to their pre-vaccination HSV-1 and HSV-2 serostatus for analysis. Immunoglobulin G (IgG) and IgA responses to gD were determined by a binding antibody multiplex assay and HSV-2 serostatus was determined by Western blot analysis. Ninety-three percent and 75% of the vaccine recipients had anti-gD IgG and IgA responses two weeks post last vaccination, respectively. There was no evidence of reduction in HSV-2 infection by vaccination compared to placebo recipients over 78 weeks of follow-up. The annual incidence of HSV-2 infection in individuals who were HSV-2 negative at baseline or HSV-1 positive and HSV-2 indeterminate at baseline were 4.38/100 person-years (py) and 3.28/100 py in the vaccine and placebo groups, respectively. Baseline HSV-1 status did not affect subsequent HSV-2 acquisition. Specifically, the estimated odds ratio of HSV-2 infection by Week 78 for female placebo recipients who were baseline HSV-1 positive (n = 422) vs. negative (n = 1120) was 1.14 [95% confidence interval 0.66 to 1.94, p = 0.64)]. No evidence of reduction in the incidence of HSV-2 infection by vaccination was detected. CONCLUSIONS: AIDSVAX® B/E containing gD did not confer protection from HSV-2 acquisition in HSV-2 seronegative women, despite eliciting anti-gD serum antibodies.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , Herpes Simples/prevenção & controle , Vacinas contra a AIDS/administração & dosagem , Adulto , Feminino , Anticorpos Anti-HIV/administração & dosagem , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Herpes Simples/genética , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 2/imunologia , Herpesvirus Humano 2/patogenicidade , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Masculino , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
9.
EBioMedicine ; 2(7): 713-22, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26288844

RESUMO

Human monoclonal antibody CH58 isolated from an RV144 vaccinee binds at Lys169 of the HIV-1 Env gp120 V2 region, a site of vaccine-induced immune pressure. CH58 neutralizes HIV-1 CRF_01 AE strain 92TH023 and mediates ADCC against CD4 + T cell targets infected with CRF_01 AE tier 2 virus. CH58 and other antibodies that bind to a gp120 V2 epitope have a second light chain complementarity determining region (LCDR2) bearing a glutamic acid, aspartic acid (ED) motif involved in forming salt bridges with polar, basic side amino acid side chains in V2. In an effort to learn how V2 responses develop, we determined the crystal structures of the CH58-UA antibody unliganded and bound to V2 peptide. The structures showed an LCDR2 structurally pre-conformed from germline to interact with V2 residue Lys169. LCDR3 was subject to conformational selection through the affinity maturation process. Kinetic analyses demonstrate that only a few contacts were responsible for a 2000-fold increase in KD through maturation, and this effect was predominantly due to an improvement in off-rate. This study shows that preconformation and preconfiguration can work in concert to produce antibodies with desired immunogenic properties.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/isolamento & purificação , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , HIV-1/imunologia , Mutação/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Afinidade de Anticorpos/imunologia , Dicroísmo Circular , Cristalografia por Raios X , Mapeamento de Epitopos , Antígenos HIV/química , Antígenos HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Humanos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Conformação Proteica , Resultado do Tratamento
10.
PLoS Pathog ; 11(8): e1005042, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26237403

RESUMO

HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Imunofluorescência , HIV-1/imunologia , Humanos , Mucosa Intestinal/virologia , Macaca mulatta , Conformação Proteica , Reto , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ressonância de Plasmônio de Superfície , Proteínas do Envelope Viral/química
11.
Nat Biotechnol ; 33(6): 610-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26006008

RESUMO

Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells as well as the interrogation of cell population heterogeneity. However, in many instances, computational tools to analyze the wealth of data generated by these technologies are lacking. Here, we present a computational framework for unbiased combinatorial polyfunctionality analysis of antigen-specific T-cell subsets (COMPASS). COMPASS uses a Bayesian hierarchical framework to model all observed cell subsets and select those most likely to have antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, and human subject-level responses are quantified by two summary statistics that describe the quality of an individual's polyfunctional response and can be correlated directly with clinical outcome. Using three clinical data sets of cytokine production, we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals cellular 'correlates of protection/immunity' in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Citocinas/imunologia , Infecções por HIV/tratamento farmacológico , Imunidade Celular , Subpopulações de Linfócitos T/imunologia , Vacinas contra a AIDS/imunologia , Estudos de Casos e Controles , Citocinas/biossíntese , Citocinas/sangue , Feminino , Citometria de Fluxo , Produtos do Gene env/imunologia , Produtos do Gene env/uso terapêutico , Infecções por HIV/sangue , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Voluntários Saudáveis , Humanos , Imunoglobulina A/sangue , Masculino , Análise de Célula Única , Resultado do Tratamento
12.
Sci Transl Med ; 6(228): 228ra38, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24648341

RESUMO

The human phase 2B RV144 ALVAC-HIV vCP1521/AIDSVAX B/E vaccine trial, held in Thailand, resulted in an estimated 31.2% efficacy against HIV infection. By contrast, vaccination with VAX003 (consisting of only AIDSVAX B/E) was not protective. Because protection within RV144 was observed in the absence of neutralizing antibody activity or cytotoxic T cell responses, we speculated that the specificity or qualitative differences in Fc-effector profiles of nonneutralizing antibodies may have accounted for the efficacy differences observed between the two trials. We show that the RV144 regimen elicited nonneutralizing antibodies with highly coordinated Fc-mediated effector responses through the selective induction of highly functional immunoglobulin G3 (IgG3). By contrast, VAX003 elicited monofunctional antibody responses influenced by IgG4 selection, which was promoted by repeated AIDSVAX B/E protein boosts. Moreover, only RV144 induced IgG1 and IgG3 antibodies targeting the crown of the HIV envelope V2 loop, albeit with limited coverage of breakthrough viral sequences. These data suggest that subclass selection differences associated with coordinated humoral functional responses targeting strain-specific protective V2 loop epitopes may underlie differences in vaccine efficacy observed between these two vaccine trials.


Assuntos
Vacinas contra a AIDS/imunologia , Infecções por HIV/prevenção & controle , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , HIV/fisiologia , Anticorpos Anti-HIV/biossíntese , Humanos
13.
Immunity ; 38(1): 176-86, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23313589

RESUMO

The RV144 HIV-1 trial of the canary pox vector (ALVAC-HIV) plus the gp120 AIDSVAX B/E vaccine demonstrated an estimated efficacy of 31%, which correlated directly with antibodies to HIV-1 envelope variable regions 1 and 2 (V1-V2). Genetic analysis of trial viruses revealed increased vaccine efficacy against viruses matching the vaccine strain at V2 residue 169. Here, we isolated four V2 monoclonal antibodies from RV144 vaccinees that recognize residue 169, neutralize laboratory-adapted HIV-1, and mediate killing of field-isolate HIV-1-infected CD4(+) T cells. Crystal structures of two of the V2 antibodies demonstrated that residue 169 can exist within divergent helical and loop conformations, which contrasted dramatically with the ß strand conformation previously observed with a broadly neutralizing antibody PG9. Thus, RV144 vaccine-induced immune pressure appears to target a region that may be both sequence variable and structurally polymorphic. Variation may signal sites of HIV-1 envelope vulnerability, providing vaccine designers with new options.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Sequência de Aminoácidos , Substituição de Aminoácidos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica/imunologia , Conformação Proteica
15.
Southeast Asian J Trop Med Public Health ; 42(5): 1130-46, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22299439

RESUMO

HIV/AIDS is a major public health problem worldwide, especially in developing countries. The development of a safe and effective HIV vaccine is central to stopping the epidemic and would be a great public health tool. The AIDS Vaccine for Asia Network (AVAN) is a group of concerned investigators committed to assisting regional and global HIV vaccine efforts. AVAN's focus on improving the coordination and harmonization of research, ethical reviews, clinical trial capacity, regulatory frameworks, vaccine manufacturing, community participation, and government advocacy could help accelerate HIV vaccine efforts in the region. At a meeting in November 2010, researchers from various countries in Asia presented their progress in HIV vaccine research and development. Six working groups discussed the current status, gaps and methods to strengthen capacity and infrastructure in various areas related to AIDS vaccine research and development. These discussions led to the development of prioritized action plans for the next 5 years. This report describes the gaps and challenges HIV vaccine research faces in the region and recommends improvement and standardization of facilities, and coordination and harmonization of all activities related to AIDS vaccine research and development, including possible technology transfer when a vaccine becomes available.


Assuntos
Vacinas contra a AIDS , Pesquisa Biomédica/organização & administração , Saúde Global , Infecções por HIV/prevenção & controle , HIV/imunologia , Ásia/epidemiologia , Pesquisa Biomédica/normas , Ensaios Clínicos como Assunto , Países em Desenvolvimento , Infecções por HIV/epidemiologia , Infecções por HIV/imunologia , Humanos , Cooperação Internacional
16.
Artigo em Inglês | MEDLINE | ID: mdl-19058617

RESUMO

According to the Joint UN Program on AIDS (UNAIDS), an estimated 4.9 million adults and children are living with HIV in Asia and the Pacific. Refinement and development of existing and new prevention and treatment technologies--including safe, effective, and accessible AIDS vaccines--are urgent public health priorities. The Asian region faces several challenges for AIDS vaccine development. There are multiple genetic variants of HIV-1 driving the epidemic in the region and too few vaccine candidates in the pipeline targeting those subtypes. Low HIV incidence throughout the region means that trial sites must recruit larger numbers of volunteers and shift their focus to higher-risk populations where incidence is higher. Also, the cultural, economic, and political diversity of the region may render collaboration very complex, but also beneficial at a regional level. Recognizing that collaborating as a region could foster and accelerate AIDS vaccine development, participants at the Sapporo International Consultation recommended that an AIDS Vaccine Asian Network (AVAN) be created to facilitate interactions between donors and funding opportunities, increase regional clinical trial and production capacity, support region-specific advocacy and communication strategies, contribute to the Global HIV Vaccine Enterprise Scientific Plan, prepare a regional approach for future vaccine deployment, and develop a regional platform for clinical trials including harmonized legal, regulatory, and ethical frameworks.


Assuntos
Vacinas contra a AIDS , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV/imunologia , Ásia , Pesquisa Biomédica , Saúde Global , Humanos , Cooperação Internacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA