Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(5): 101552, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38729158

RESUMO

Y-box binding protein-1 (YB-1) is a proto-oncogenic protein associated with protein translation regulation. It plays a crucial role in the development and progression of triple-negative breast cancer (TNBC). In this study, we describe a promising approach to inhibit YB-1 using SU056, a small-molecule inhibitor. SU056 physically interacts with YB-1 and reduces its expression, which helps to restrain the progression of TNBC. Proteome profiling analysis indicates that the inhibition of YB-1 by SU056 can alter the proteins that regulate protein translation, an essential process for cancer cell growth. Preclinical studies on human cells, mice, and patient-derived xenograft tumor models show the effectiveness of SU056. Moreover, toxicological studies have shown that SU056 treatment and dosing are well tolerated without any adverse effects. Overall, our study provides a strong foundation for the further development of SU056 as a potential treatment option for patients with TNBC by targeting YB-1.


Assuntos
Biossíntese de Proteínas , Neoplasias de Mama Triplo Negativas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína 1 de Ligação a Y-Box , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Animais , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Feminino , Linhagem Celular Tumoral , Camundongos , Biossíntese de Proteínas/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus
2.
ACS Med Chem Lett ; 13(4): 615-622, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450373

RESUMO

A natural compound screen identified several anticancer compounds, among which azapodophyllotoxin (AZP) was found to be the most potent. AZP caused decreased viability of both mouse and human lymphoma and renal cell cancer (RCC) tumor-derived cell lines. Novel AZP derivatives were synthesized and screened identifying compound NSC750212 to inhibit the growth of both lymphoma and RCC both in vitro and in vivo. A nanoimmunoassay was used to assess the NSC750212 mode of action in vivo. On the basis of the structure of AZP and its mode of action, AZP disrupts tubulin polymerization. Through desorption electrospray ionization mass spectrometry imaging, NSC750212 was found to inhibit lipid metabolism. NSC750212 suppresses monoglycerol metabolism depleting lipids and thereby inhibits tumor growth. The dual mode of tubulin polymerization disruption and monoglycerol metabolism inhibition makes NSC750212 a potent small molecule against lymphoma and RCC.

3.
Cell Chem Biol ; 28(8): 1206-1220.e6, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33713600

RESUMO

Y box binding protein 1 (YB-1) is a multifunctional protein associated with tumor progression and the emergence of treatment resistance (TR). Here, we report an azopodophyllotoxin small molecule, SU056, that potently inhibits tumor growth and progression via YB-1 inhibition. This YB-1 inhibitor inhibits cell proliferation, resistance to apoptosis in ovarian cancer (OC) cells, and arrests in the G1 phase. Inhibitor treatment leads to enrichment of proteins associated with apoptosis and RNA degradation pathways while downregulating spliceosome pathway. In vivo, SU056 independently restrains OC progression and exerts a synergistic effect with paclitaxel to further reduce disease progression with no observable liver toxicity. Moreover, in vitro mechanistic studies showed delayed disease progression via inhibition of drug efflux and multidrug resistance 1, and significantly lower neurotoxicity as compared with etoposide. These data suggest that YB-1 inhibition may be an effective strategy to reduce OC progression, antagonize TR, and decrease patient mortality.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Proteína 1 de Ligação a Y-Box/antagonistas & inibidores , Idoso , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Pessoa de Meia-Idade , Estrutura Molecular , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ratos , Proteína 1 de Ligação a Y-Box/análise , Proteína 1 de Ligação a Y-Box/metabolismo
4.
Br J Cancer ; 124(3): 604-615, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139797

RESUMO

BACKGROUND: To circumvent Warburg effect, several clinical trials for different cancers are utilising a combinatorial approach using metabolic reprogramming and chemotherapeutic agents including metformin. The majority of these metabolic interventions work via indirectly activating AMP-activated protein kinase (AMPK) to alter cellular metabolism in favour of oxidative phosphorylation over aerobic glycolysis. The effect of these drugs is dependent on glycaemic and insulin conditions.  Therefore, development of small molecules, which can activate AMPK, irrespective of the energy state, may be a better approach for triple-negative breast cancer (TNBC) treatment. METHODS: Therapeutic effect of SU212 on TNBC cells was examined using in vitro and in vivo models. RESULTS: We developed and characterised the efficacy of novel AMPK activator (SU212) that selectively induces oxidative phosphorylation and decreases glycolysis in TNBC cells, while not affecting these pathways in normal cells.   SU212 accomplished this metabolic reprogramming by activating AMPK independent of energy stress and irrespective of the glycaemic/insulin state. This leads to mitotic phase arrest and apoptosis in TNBC cells. In vivo, SU212 inhibits tumour growth, cancer progression and metastasis. CONCLUSIONS: SU212 directly activates AMPK in TNBC cells, but does not hamper glucose metabolism in normal cells. Our study provides compelling preclinical data for further development of SU212 for the treatment of TNBC.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Morte Celular , Fosforilação Oxidativa/efeitos dos fármacos , Podofilotoxina/análogos & derivados , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Ativação Enzimática/efeitos dos fármacos , Feminino , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Ácido Láctico/metabolismo , Lipogênese/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Distribuição Aleatória , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Efeito Warburg em Oncologia
5.
ACS Med Chem Lett ; 10(9): 1314-1321, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31531203

RESUMO

Surgical resection and radiotherapy are an effective treatment in many head and neck squamous cell carcinomas (HNSCC), but in others, the development of radiotherapy resistance limits treatment efficacy and permits disease progression. We developed a novel multiwell radiation dosing method to increase the throughput of our investigation of the activity of a novel podophyllotoxin SU093 in acting as a radiosensitizer in the HNSCC models FaDu and SCC-25. These in vitro studies showed that combining SU093 with 5 Grays ionizing radiation acted synergistically to increase HNSCC apoptosis and decrease its proliferation via inhibition of Nuclear factor, erythroid 2 like 2 (Nrf2), a key effector of the DNA damage response induced by ionizing radiation. Combined treatment reduced in vitro migration in a simulated wounding model while also promoting cell cycle arrest at the G2/M phase. These findings validate the potential of SU093 as a synergistic radiosensitizing agent for use in combination with localized radiotherapy in treatment resistant HNSCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA