Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Front Clin Diabetes Healthc ; 4: 1218692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711232

RESUMO

Type 2 diabetes (T2D) has been rising in prevalence over the past few decades in the US and worldwide. T2D contributes to significant morbidity and premature mortality, primarily due to cardiovascular disease (CVD). Exercise is a major cornerstone of therapy for T2D as a result of its positive effects on glycemic control, blood pressure, weight loss and cardiovascular risk as well as other measures of health. However, studies show that a majority of people with T2D do not exercise regularly. The reasons given as to why exercise goals are not met are varied and include physiological, psychological, social, cultural and environmental barriers to exercise. One potential cause of inactivity in people with T2D is impaired cardiorespiratory fitness, even in the absence of clinically evident complications. The exercise impairment, although present in both sexes, is greater in women than men with T2D. Women with T2D also experience greater perceived exertion with exercise than their counterparts without diabetes. These physiological barriers are in addition to constructed societal barriers including cultural expectations of bearing the burden of childrearing for women and in some cultures, having limited access to exercise because of additional cultural expectations. People at risk for and with diabetes more commonly experience unfavorable social determinants of health (SDOH) than people without diabetes, represented by neighborhood deprivation. Neighborhood deprivation measures lack of resources in an area influencing socioeconomic status including many SDOH such as income, housing conditions, living environment, education and employment. Higher indices of neighborhood deprivation have been associated with increased risk of all-cause, cardiovascular and cancer related mortality. Unfavorable SDOH is also associated with obesity and lower levels of physical activity. Ideally regular physical activity should be incorporated into all communities as part of a productive and healthy lifestyle. One potential solution to improve access to physical activity is designing and building environments with increased walkability, greenspace and safe recreational areas. Other potential solutions include the use of continuous glucose monitors as real-time feedback tools aimed to increase motivation for physical activity, counseling aimed at improving self-efficacy towards exercise and even acquiring a dog to increase walking time. In this narrative review, we aim to examine some traditional and novel barriers to exercise, as well as present evidence on novel interventions or solutions to overcome barriers to increase exercise and physical activity in all people with prediabetes and T2D.

2.
Endocrinology ; 162(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410380

RESUMO

Breast cancer survivors treated with tamoxifen and aromatase inhibitors report weight gain and have an elevated risk of type 2 diabetes, especially if they have obesity. These patient experiences are inconsistent with, preclinical studies using high doses of tamoxifen which reported acute weight loss. We investigated the impact of breast cancer endocrine therapies in a preclinical model of obesity and in a small group of breast adipose tissue samples from women taking tamoxifen to understand the clinical findings. Mature female mice were housed at thermoneutrality and fed either a low-fat/low-sucrose (LFLS) or a high-fat/high-sucrose (HFHS) diet. Consistent with the high expression of Esr1 observed in mesenchymal stem cells from adipose tissue, endocrine therapy was associated with adipose accumulation and more preadipocytes compared with estrogen-treated control mice but resulted in fewer adipocyte progenitors only in the context of HFHS. Analysis of subcutaneous adipose stromal cells revealed diet- and treatment-dependent effects of endocrine therapies on various cell types and genes, illustrating the complexity of adipose tissue estrogen receptor signaling. Breast cancer therapies supported adipocyte hypertrophy and associated with hepatic steatosis, hyperinsulinemia, and glucose intolerance, particularly in obese females. Current tamoxifen use associated with larger breast adipocyte diameter only in women with obesity. Our translational studies suggest that endocrine therapies may disrupt adipocyte progenitors and support adipocyte hypertrophy, potentially leading to ectopic lipid deposition that may be linked to a greater type 2 diabetes risk. Monitoring glucose tolerance and potential interventions that target insulin action should be considered for some women receiving life-saving endocrine therapies for breast cancer.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Antineoplásicos Hormonais/uso terapêutico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Obesidade , Aumento de Peso/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Antineoplásicos Hormonais/farmacologia , Inibidores da Aromatase/administração & dosagem , Inibidores da Aromatase/farmacologia , Feminino , Humanos , Neoplasias Mamárias Experimentais/complicações , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , Tamoxifeno/administração & dosagem , Tamoxifeno/farmacologia , Magreza/complicações , Magreza/tratamento farmacológico , Magreza/metabolismo , Magreza/patologia
3.
Diabetes Obes Metab ; 23(3): 844-849, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33236509

RESUMO

Youth with type 1 diabetes (T1D) demonstrate insulin resistance, independently of glycaemia, when compared to normoglycaemic peers. Insulin resistance increases the risk of cardiovascular disease and diabetic kidney disease, factors also associated with systemic inflammation. We evaluated the effect of metformin on markers of inflammation and diabetic kidney disease in adolescents with T1D. EMERALD, a double-blind, randomized, placebo-controlled trial of 3 months of metformin in 48 participants aged 12-21 years with T1D, included baseline and follow-up assessments of serum creatinine and cystatin C to estimate glomerular filtration rate (eGFR), aspartate aminotransferase, alanine aminotransferase, high-sensitivity C-reactive protein, white blood count, platelets, adiponectin, leptin, and urine albumin: creatinine ratio (UACR). Metformin was associated with a 13.9 mL/min/1.73 m2 (95% confidence interval 4.7-23.1 mL/min/1.73 m2 ) increase in estimated GFR by serum creatinine versus placebo (P ≤ 0.01), with a significant difference remaining after multivariable adjustments (P = 0.03). Whereas eGFR measured by serum creatinine increased significantly after metformin treatment, no differences were observed in cystatin C, UACR, or systemic inflammatory markers. Additional studies with directly measured GFR in response to metformin in T1D are needed.


Assuntos
Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Metformina , Adolescente , Albuminúria , Creatinina , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Taxa de Filtração Glomerular , Humanos , Rim , Metformina/uso terapêutico
4.
J Diabetes Complications ; 34(8): 107591, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32471789

RESUMO

AIMS: To compare cardiovascular risk factor control in adults with diabetes participating in a national diabetes registry to those in the general population and to ascertain regional differences in diabetes care. METHODS: Adults with diagnosed diabetes in the Diabetes Collaborative Registry (DCR) were compared with those in the National Health and Nutrition Examination Survey (NHANES) from 2015 to 2016; standardized mean difference (SMD) > 0.2 defined significance. Regional differences were assessed in the DCR cohort; p < .05 defined significance. RESULTS: The DCR cohort was older (61 vs. 57 years, SMD = 0.38), more insured (99.7% vs. 91.0%, SMD = 0.42), and less ethnically diverse (83% non-Hispanic white vs. 76%, SMD = 0.30) compared with NHANES. The proportion of overweight/obesity, A1c < 7% (<53 mmol/mol), and BP < 140/90 were similar, but DCR participants had higher proportion with LDL < 2.59 mmol/L (61% vs. 41%, SMD = 0.39) and fewer tobacco users (17% vs. 32%, SMD = 0.35). Regionally, obesity, lack of glycaemic control, and tobacco use were highest in the Midwest, BP control was the lowest in the South, and LDL control was lowest in the Northeast. CONCLUSIONS: Significant regional differences in diabetes care delivery and outcomes were identified using a national diabetes registry. Serial analyses of the DCR may supplement national evaluations to deepen our understanding of diabetes care in the US.


Assuntos
Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Complicações do Diabetes/prevenção & controle , Adulto , Idoso , Doenças Cardiovasculares/diagnóstico , Estudos de Coortes , Complicações do Diabetes/diagnóstico , Complicações do Diabetes/epidemiologia , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Fatores de Risco , Inquéritos e Questionários , Estados Unidos/epidemiologia
5.
J Appl Physiol (1985) ; 126(6): 1533-1540, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30896357

RESUMO

Hyperhomocysteinemia is associated with endothelial dysfunction and increased cardiovascular disease (CVD). We determined whether elevated homocysteine (Hcy) and markers of Hcy metabolism were associated with the previously reported endothelial dysfunction across stages of the menopause transition. Brachial artery flow-mediated dilation (FMD) and plasma concentrations of Hcy, cysteine, and methionine were measured in healthy women (n = 128) 22-70 yr of age categorized as premenopausal (n = 35), perimenopausal (early: n = 16; late: n = 21), and postmenopausal (early: n = 21; late: n = 35). Dietary intake of micronutrients involved in Hcy metabolism (e.g., vitamins B6, B12, folate) was assessed in a subpopulation of women. Hcy and cysteine concentrations were progressively higher, and methionine was progressively lower across menopausal stages (all P < 0.005). The higher Hcy and cysteine concentrations correlated with lower circulating estradiol levels (r = -0.49 and -0.50, respectively, both P < 0.001). FMD was inversely correlated with Hcy (r = -0.25, P = 0.004) and cysteine (r = -0.39, P < 0.001) and positively correlated with methionine concentrations (r = 0.25, P = 0.005). Dietary intake of vitamins B6 and B12 (both P < 0.05) were lower in postmenopausal women. Vitamin B12 intake correlated with FMD (r = 0.22, P = 0.006). These data suggest that declines in estradiol across stages of the menopause transition may lead to elevations in Hcy and cysteine that may contribute to endothelial dysfunction in postmenopausal women. Future studies should examine whether targeting Hcy metabolism during the perimenopausal to early postmenopausal period with interventions, including diet, attenuates or reverses the decline in endothelial function in women. NEW & NOTEWORTHY Declines in circulating estradiol across the stages of the menopausal transition may lead to elevations in Hcy and cysteine concentrations that may contribute to endothelial dysfunction. Abnormalities in the Hcy metabolic pathways, possibly related to dietary deficiencies of vitamins B12 and B6 and folate, may contribute to elevations in Hcy and cysteine concentrations. Findings also suggest that higher cysteine levels may be more damaging to the vascular endothelium than Hcy.


Assuntos
Cisteína/sangue , Endotélio Vascular/fisiopatologia , Homocisteína/sangue , Menopausa/sangue , Doenças Vasculares/sangue , Doenças Vasculares/fisiopatologia , Adulto , Idoso , Artéria Braquial/fisiopatologia , Dieta , Estradiol/sangue , Feminino , Humanos , Pessoa de Meia-Idade , Estado Nutricional/fisiologia , Pós-Menopausa/sangue , Saúde da Mulher , Adulto Jovem
6.
Diabetes ; 67(7): 1369-1379, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29643061

RESUMO

Type 2 diabetes is associated with impaired exercise capacity. Alterations in both muscle perfusion and mitochondrial function can contribute to exercise impairment. We hypothesized that impaired muscle mitochondrial function in type 2 diabetes is mediated, in part, by decreased tissue oxygen delivery and would improve with oxygen supplementation. Ex vivo muscle mitochondrial content and respiration assessed from biopsy samples demonstrated expected differences in obese individuals with (n = 18) and without (n = 17) diabetes. Similarly, in vivo mitochondrial oxidative phosphorylation capacity measured in the gastrocnemius muscle via 31P-MRS indicated an impairment in the rate of ADP depletion with rest (27 ± 6 s [diabetes], 21 ± 7 s [control subjects]; P = 0.008) and oxidative phosphorylation (P = 0.046) in type 2 diabetes after isometric calf exercise compared with control subjects. Importantly, the in vivo impairment in oxidative capacity resolved with oxygen supplementation in adults with diabetes (ADP depletion rate 5.0 s faster, P = 0.012; oxidative phosphorylation 0.046 ± 0.079 mmol/L/s faster, P = 0.027). Multiple in vivo mitochondrial measures related to HbA1c These data suggest that oxygen availability is rate limiting for in vivo mitochondrial oxidative exercise recovery measured with 31P-MRS in individuals with uncomplicated diabetes. Targeting muscle oxygenation could improve exercise function in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Mitocôndrias Musculares/efeitos dos fármacos , Obesidade/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Oxigênio/administração & dosagem , Adulto , Idoso , Respiração Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Exercício Físico/fisiologia , Terapia por Exercício/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/complicações , Obesidade/terapia , Oxigênio/farmacologia , Consumo de Oxigênio/fisiologia , Comportamento Sedentário
7.
Diabetologia ; 60(8): 1550-1558, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28497164

RESUMO

AIMS/HYPOTHESIS: Metformin is the drug most often used to treat type 2 diabetes. Evidence suggests that metformin may reduce mortality of individuals with type 2 diabetes, but the mechanism of such an effect is unknown and outcomes of metformin treatment in people without diabetes have not been determined. If metformin favourably affected mortality of non-diabetic individuals, it might have even broader therapeutic utility. We evaluated the effect of metformin on myocardial energetics and ischaemic ventricular fibrillation (VF) in metabolically normal pigs. METHODS: Domestic farm pigs were treated with metformin (30 mg kg-1 day-1 orally for 2-3 weeks; n = 36) or received no treatment (n = 37). Under anaesthesia, pigs underwent up to 90 min low-flow regional myocardial ischaemia followed by 45 min of reperfusion. Pigs were monitored for arrhythmia, monophasic action potential morphology, haemodynamics and myocardial substrate utilisation, AMP-activated protein kinase (AMPK) phosphorylation activity and ATP concentration. RESULTS: Death due to VF occurred in 12% of pigs treated with metformin compared with 50% of untreated controls (p = 0.03). The anti-fibrillatory effect of metformin was associated with attenuation of action potential shortening in ischaemic myocardium (p = 0.02) and attenuation of the difference in action potential duration between ischaemic and non-ischaemic regions (p < 0.001) compared with untreated controls. Metformin had no effect on myocardial contractile function, oxygen consumption, or glucose or lactate utilisation. During ischaemia, however, metformin treatment amplified the activation of AMPK and preserved ATP concentration in myocardium compared with untreated controls (each p < 0.05). CONCLUSIONS/INTERPRETATION: Chronic treatment of metabolically normal pigs with metformin at a clinically relevant dose reduces mortality from ischaemic VF. This protection is associated with preservation of myocardial energetics during ischaemia. Maintenance of myocardial ATP concentration during ischaemia is likely to prevent action potential shortening, heterogeneity of repolarisation, and propensity for lethal arrhythmia. The findings suggest that metformin might be protective in non-diabetic individuals with coronary heart disease.


Assuntos
Metformina/uso terapêutico , Fibrilação Ventricular/prevenção & controle , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Administração Intravenosa , Animais , Citrato (si)-Sintase/metabolismo , Feminino , Masculino , Metformina/administração & dosagem , Isquemia Miocárdica/prevenção & controle , Suínos
8.
J Diabetes Complications ; 31(2): 449-455, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27884660

RESUMO

BACKGROUND: Exercise is recommended as a cornerstone of treatment for type 2 diabetes mellitus (T2DM), however, it is often poorly adopted by patients. Even in the absence of apparent cardiovascular disease, persons with T2DM have an impaired ability to carry out maximal and submaximal exercise and these impairments are correlated with cardiac and endothelial dysfunction. Glucagon-like pepetide-1 (GLP-1) augments endothelial and cardiac function in T2DM. We hypothesized that administration of a GLP-1 agonist (exenatide) would improve exercise capacity in T2DM. METHODS AND RESULTS: Twenty-three participants (64±4years; mean±SE) with uncomplicated T2DM were randomized in a double-blinded manner to receive either 10µg BID of exenatide or matching placebo after baseline measurements. Treatment with exenatide did not improve VO2peak (P=0.1464) or VO2 kinetics (P=0.2775). Diastolic function, assessed via resting lateral E:E', was improved with administration of exenatide compared with placebo (Placebo Pre: 7.6±1.0 vs. Post: 8.4±1.2 vs. Exenatide Pre: 8.1±0.7 vs. Post: 6.7±0.6; P=0.0127). Additionally, arterial stiffness measured by pulse wave velocity, was reduced with exenatide treatment compared with placebo (Placebo Pre: 10.5±0.8 vs. Post: 11.5±1.1s vs. Exenatide Pre: 11.4±1.8 vs. Post: 10.2±1.4s; P=0.0373). Exenatide treatment did not improve endothelial function (P=0.1793). CONCLUSIONS: Administration of exenatide improved cardiac function and reduced arterial stiffness, however, these changes were not accompanied by improved functional exercise capacity. In order to realize the benefits of this drug on exercise capacity, combining exenatide with aerobic exercise training in participants with T2DM may be warranted.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Angiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/prevenção & controle , Hipoglicemiantes/uso terapêutico , Peptídeos/uso terapêutico , Rigidez Vascular/efeitos dos fármacos , Peçonhas/uso terapêutico , Disfunção Ventricular Esquerda/prevenção & controle , Idoso , Artérias/efeitos dos fármacos , Artérias/fisiopatologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Método Duplo-Cego , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Exenatida , Tolerância ao Exercício/efeitos dos fármacos , Feminino , Seguimentos , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Humanos , Hipoglicemiantes/efeitos adversos , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio/efeitos dos fármacos , Peptídeos/efeitos adversos , Análise de Onda de Pulso , Comportamento Sedentário , Peçonhas/efeitos adversos , Disfunção Ventricular Esquerda/complicações
9.
J Neurovirol ; 22(5): 674-682, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27245593

RESUMO

Varicella zoster virus (VZV) is a ubiquitous alphaherpesvirus that establishes latency in ganglionic neurons throughout the neuraxis after primary infection. Here, we show that VZV infection induces a time-dependent significant change in mitochondrial morphology, an important indicator of cellular health, since mitochondria are involved in essential cellular functions. VZV immediate-early protein 63 (IE63) was detected in mitochondria-rich cellular fractions extracted from infected human fetal lung fibroblasts (HFL) by Western blotting. IE63 interacted with cytochrome c oxidase in bacterial 2-hybrid analyses. Confocal microscopy of VZV-infected HFL cells at multiple times after infection revealed the presence of IE63 in the nucleus, mitochondria, and cytoplasm. Our data provide the first evidence that VZV infection induces alterations in mitochondrial morphology, including fragmentation, which may be involved in cellular damage and/or death during virus infection.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Fibroblastos/virologia , Herpesvirus Humano 3/patogenicidade , Interações Hospedeiro-Patógeno , Proteínas Imediatamente Precoces/genética , Mitocôndrias/virologia , Proteínas do Envelope Viral/genética , Morte Celular/genética , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Citoplasma/virologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feto , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Herpesvirus Humano 3/crescimento & desenvolvimento , Humanos , Proteínas Imediatamente Precoces/metabolismo , Pulmão/citologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas do Envelope Viral/metabolismo
10.
J Am Heart Assoc ; 5(3): e002804, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26994128

RESUMO

BACKGROUND: Myocardial mechanics are altered in adults with obesity and type 2 diabetes (T2D); insulin resistance and adipokines have been implicated as important risk factors for cardiovascular disease, but these relationships are poorly described in adolescents. We hypothesized that obese adolescents and adolescents with T2D would have abnormal cardiac function compared to lean adolescents. In addition, we hypothesized that insulin sensitivity (IS), adiposity, and adipokines would be associated with altered cardiac strain and cardiopulmonary fitness in adolescents with T2D. METHODS AND RESULTS: Adolescents (15±2 years) with T2D (n=37), obesity without diabetes (n=41), and lean controls (n=31) of similar age and pubertal stage underwent echocardiography with speckle tracking, assessment of IS by hyperinsulinemic-euglycemic clamp, body composition by dual-energy x-ray absorptiometry, peak oxygen consumption (VO2peak) by cycle ergometry, adiponectin, and leptin. Compared to lean and to obese controls, adolescents with T2D had significantly lower cardiac circumferential strain (CS) (-18.9±4.6 [T2D] versus -21.5±3.5 [obese] versus -22.0±4.2% [lean], P=0.04) and VO2peak (37.6±7.5 [T2D] versus 43.4±8.2 [obese] versus 47.6±8.6 mL/lean kg/min [lean], P<0.0001). In T2D youth, VO2peak was associated with CS, and the association remained significant after adjusting for age, sex, and IS (ß±SE: -0.73±0.26, P=0.02). Among adolescents with T2D, CS was also associated with adiponectin, longitudinal strain with leptin, and VO2peak with adiponectin and IS. CONCLUSIONS: Adolescents with T2D had abnormal CS and reduced VO2peak compared to obese and lean controls, which may represent the earliest evidence of cardiac functional impairment in T2D. Low adiponectin, rather than conventional risk factors and IS, correlated with CS, while both adiponectin and IS related to cardiopulmonary fitness.


Assuntos
Adiponectina/sangue , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/etiologia , Obesidade Infantil/complicações , Função Ventricular Esquerda , Absorciometria de Fóton , Adiposidade , Adolescente , Biomarcadores/sangue , Fenômenos Biomecânicos , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/fisiopatologia , Cardiomiopatias Diabéticas/sangue , Cardiomiopatias Diabéticas/diagnóstico , Cardiomiopatias Diabéticas/fisiopatologia , Ecocardiografia Doppler , Teste de Esforço , Tolerância ao Exercício , Feminino , Humanos , Resistência à Insulina , Masculino , Consumo de Oxigênio , Obesidade Infantil/sangue , Obesidade Infantil/diagnóstico , Obesidade Infantil/fisiopatologia , Estresse Mecânico
11.
Mitochondrion ; 26: 58-71, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26688338

RESUMO

Mitochondria undergo dynamic changes in morphology in order to adapt to changes in nutrient and oxygen availability, communicate with the nucleus, and modulate intracellular calcium dynamics. Many recent papers have been published assessing mitochondrial morphology endpoints. Although these studies have yielded valuable insights, contemporary assessment of mitochondrial morphology is typically subjective and qualitative, precluding direct comparison of outcomes between different studies and likely missing many subtle effects. In this paper, we describe a novel software technique for measuring the average length, average width, spatial density, and intracellular localization of mitochondria from a fluorescent microscope image. This method was applied to distinguish baseline characteristics of Human Umbilical Vein Endothelial Cells (HUVECs), primary Goto-Kakizaki rat aortic smooth muscle cells (GK SMCs), primary Wistar rat aortic smooth muscle cells (Wistar SMCs), and SH-SY5Ys (human neuroblastoma cell line). Consistent with direct observation, our algorithms found SH-SY5Ys to have the greatest mitochondrial density, while HUVECs were found to have the longest mitochondria. Mitochondrial morphology responses to temperature, nutrient, and oxidative stressors were characterized to test algorithm performance. Large morphology changes recorded by the software agreed with direct observation, and subtle but consistent morphology changes were found that would not otherwise have been detected. Endpoints were consistent between experimental repetitions (R=0.93 for length, R=0.93 for width, R=0.89 for spatial density, and R=0.74 for localization), and maintained reasonable agreement even when compared to images taken with compromised microscope resolution or in an alternate imaging plane. These results indicate that the automated software described herein allows quantitative and objective characterization of mitochondrial morphology from fluorescent microscope images.


Assuntos
Aorta/citologia , Células Endoteliais da Veia Umbilical Humana/citologia , Processamento de Imagem Assistida por Computador/métodos , Mitocôndrias Musculares , Músculo Liso Vascular/citologia , Software , Animais , Humanos , Microscopia de Fluorescência/métodos , Ratos
12.
Pulm Circ ; 4(4): 638-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25610600

RESUMO

Obesity is causally linked to a number of comorbidities, including cardiovascular disease, diabetes, renal dysfunction, and cancer. Obesity has also been linked to pulmonary disorders, including pulmonary arterial hypertension (PAH). It was long believed that obesity-related PAH was the result of hypoventilation and hypoxia due to the increased mechanical load of excess body fat. However, in recent years it has been proposed that the metabolic and inflammatory disturbances of obesity may also play a role in the development of PAH. To determine whether PAH develops in obese rats in the absence of hypoxia, we assessed pulmonary hemodynamics and pulmonary artery (PA) structure in the diet-resistant/diet-induced obesity (DR/DIO) and Zucker lean/fatty rat models. We found that high-fat feeding (DR/DIO) or overfeeding (Zucker) elicited PA remodeling, neomuscularization of distal arterioles, and elevated PA pressure, accompanied by right ventricular (RV) hypertrophy. PA thickening and distal neomuscularization were also observed in DIO rats on a low-fat diet. No evidence of hypoventilation or chronic hypoxia was detected in either model, nor was there a correlation between blood glucose or insulin levels and PAH. However, circulating inflammatory cytokine levels were increased with high-fat feeding or calorie overload, and hyperlipidemia and oxidant damage in the PA wall correlated with PAH in the DR/DIO model. We conclude that hyperlipidemia and peripheral inflammation correlate with the development of PAH in obese subjects. Obesity-related inflammation may predispose to PAH even in the absence of hypoxia.

13.
J Cardiovasc Pharmacol ; 62(6): 539-48, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24084215

RESUMO

Hypoxia-induced pulmonary hypertension is characterized by progressive remodeling of the pulmonary artery (PA) system and loss of the transcription factor, cAMP response element binding protein (CREB) in PA smooth muscle cells (SMCs). Previous in vitro studies suggested that platelet-derived growth factor, a mitogen produced in the hypoxic arterial wall, elicits loss of CREB in medial SMCs via the PI3K/Akt pathway. These events trigger switching of SMCs from a quiescent, contractile phenotype to a proliferative, migratory, dedifferentiated, and synthetic phenotype, which contributes to PA thickening. Here, we investigated whether inhibition of PI3K or Akt could attenuate arterial remodeling in the lung and prevent CREB loss in PA medial SMCs in rats subjected to chronic hypoxia. Inhibition of either enzyme-blunted hypoxia-induced PA remodeling and SMC CREB depletion and diminished SMC proliferation and collagen deposition. Inhibition of Akt, but not PI3K, suppressed muscularization of distal arterioles and blunted right ventricular hypertrophy. Interestingly, mean PA pressure was elevated equally by hypoxia in untreated and inhibitor-treated groups but was normalized acutely by the Rho kinase inhibitor, Fasudil. We conclude that PI3K and Akt inhibitors can attenuate hypoxia-induced PA remodeling and SMC CREB depletion but fail to block the development of pulmonary hypertension because of their inability to repress Rho kinase-mediated vasoconstriction.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/agonistas , Hipertensão Pulmonar/prevenção & controle , Músculo Liso Vascular/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Artéria Pulmonar/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Arteríolas/patologia , Proliferação de Células/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Inibidores Enzimáticos/uso terapêutico , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Hipertensão Pulmonar/etiologia , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/prevenção & controle , Hipóxia/fisiopatologia , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Circulação Pulmonar/efeitos dos fármacos , Ratos , Ratos Endogâmicos WKY , Vasodilatadores/farmacologia , Vasodilatadores/uso terapêutico , Quinases Associadas a rho/metabolismo
14.
Am J Physiol Heart Circ Physiol ; 304(6): H861-73, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23335793

RESUMO

Clinical metabolic syndrome conveys a poor prognosis in patients with acute coronary syndrome, not fully accounted for by the extent of coronary atherosclerosis. To explain this observation, we determined whether postischemic myocardial contractile and metabolic function are impaired in a porcine dietary model of metabolic syndrome without atherosclerosis. Micropigs (n = 28) were assigned to a control diet (low fat, no added sugars) or an intervention diet (high saturated fat and simple sugars, no added cholesterol) for 7 mo. The intervention diet produced obesity, hypertension, dyslipidemia, and impaired glucose tolerance, but not atherosclerosis. Under open-chest, anesthetized conditions, pigs underwent 45 min of low-flow myocardial ischemia and 120 min of reperfusion. In both diet groups, contractile function was similar at baseline and declined similarly during ischemia. However, after 120 min of reperfusion, regional work recovered to 21 ± 12% of baseline in metabolic syndrome pigs compared with 61 ± 13% in control pigs (P = 0.01). Ischemia-reperfusion caused a progressive decline in mechanical/metabolic efficiency (regional work/O2 consumption) in metabolic syndrome hearts, but not in control hearts. Metabolic syndrome hearts demonstrated altered fatty acyl composition of cardiolipin and increased Akt phosphorylation in both ischemic and nonischemic regions, suggesting tonic activation. Metabolic syndrome hearts used more fatty acid than control hearts (P = 0.03). When fatty acid availability was restricted by prior insulin exposure, differences between groups in postischemic contractile recovery and mechanical/metabolic efficiency were eliminated. In conclusion, pigs with characteristics of metabolic syndrome demonstrate impaired contractile and metabolic recovery after low-flow myocardial ischemia. Contributory mechanisms may include remodeling of cardiolipin, abnormal activation of Akt, and excessive utilization of fatty acid substrates.


Assuntos
Síndrome Metabólica/fisiopatologia , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Acil Coenzima A/metabolismo , Animais , Glicemia , Cardiolipinas/metabolismo , Colesterol/metabolismo , Dieta , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Testes de Função Cardíaca , Insulina/sangue , Sistema de Sinalização das MAP Quinases , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Suínos , Porco Miniatura
15.
Am J Cardiol ; 110(9 Suppl): 58B-68B, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23062569

RESUMO

Diabetes mellitus (DM) is the fifth-leading cause of death worldwide and contributes to leading causes of death, cancer and cardiovascular disease, including CAD, stroke, peripheral vascular disease, and other vascular disease. While glycemic management remains a cornerstone of DM care, the co-management of hypertension, atherosclerosis, cardiovascular risk reduction, and prevention of long-term consequences associated with DM are now well recognized as essential to improve long-term survival. Clinical trial evidence substantiates the importance of glycemic control, low-density cholesterol-lowering therapy, blood pressure lowering, control of albuminuria, and comprehensive approaches targeting multiple risk factors to reduce cardiovascular risk. This article presents a review of the role of DM in the pathogenesis of atherosclerosis and cardiac dysfunction, recent evidence on the degree of glycemic control and mortality, and available evidence for a multifaceted approach to improve long-term outcomes for patients.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Complicações do Diabetes/terapia , Hiperglicemia/prevenção & controle , Albuminúria/prevenção & controle , Anticolesterolemiantes/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/mortalidade , Complicações do Diabetes/mortalidade , Complicações do Diabetes/fisiopatologia , Terapia por Exercício , Humanos , Hiperglicemia/etiologia , Fatores de Risco
16.
J Cardiovasc Pharmacol ; 55(5): 469-80, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20147842

RESUMO

BACKGROUND: The transcription factor CREB is diminished in smooth muscle cells (SMCs) in remodeled, hypertensive pulmonary arteries (PAs) in animals exposed to chronic hypoxia. Forced depletion of cyclic adenosine monophosphate response element binding protein (CREB) in PA SMCs stimulates their proliferation and migration in vitro. Platelet-derived growth factor (PDGF) produced in the hypoxic PA wall promotes CREB proteasomal degradation in SMCs via phosphatidylinositol-3-kinase/Akt signaling, which promotes phosphorylation of CREB at 2 casein kinase 2 (CK2) sites. Here we tested whether thiazolidinediones, agents that inhibit hypoxia-induced PA remodeling, attenuate SMC CREB loss. METHODS: Depletion of CREB and changes in casein kinase 2 catalytic subunit expression and activity were measured in PA SMC treated with PDGF. PA remodeling and changes in medial PA CREB and casein kinase 2 levels were evaluated in lung sections from rats exposed to hypoxia for 21 days. RESULTS: We found that the thiazolidinedione rosiglitazone prevented PA remodeling and SMC CREB loss in rats exposed to chronic hypoxia. Likewise, the thiazolidinedione troglitazone blocked PA SMC proliferation and CREB depletion induced by PDGF in vitro. Thiazolidinediones did not repress Akt activation by hypoxia in vivo or by PDGF in vitro. However, PDGF-induced CK2 alpha' catalytic subunit expression and activity in PA SMCs, and depletion of CK2 alpha' subunit prevented PDGF-stimulated CREB loss. Troglitazone inhibited PDGF-induced CK2 alpha' subunit expression in vitro and rosiglitazone blocked induction of CK2 catalytic subunit expression by hypoxia in PA SMCs in vivo. CONCLUSION: We conclude that thiazolidinediones prevent PA remodeling in part by suppressing upregulation of CK2 and loss of CREB in PA SMCs.


Assuntos
Caseína Quinase II/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Animais , Becaplermina , Western Blotting , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citosol/efeitos dos fármacos , Citosol/enzimologia , Citosol/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/prevenção & controle , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Hipóxia/patologia , Masculino , Microscopia de Fluorescência , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/metabolismo , PPAR alfa/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-sis , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos , Ratos Endogâmicos WKY , Rosiglitazona , Regulação para Cima
17.
Arterioscler Thromb Vasc Biol ; 30(4): 733-41, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20150559

RESUMO

OBJECTIVE: To examine the impact of low-density lipoprotein (LDL), an established mediator of atherosclerosis, on the transcription factor cAMP-response element-binding protein (CREB), which is a regulator of vascular smooth muscle cell (VSMC) quiescence. METHODS AND RESULTS: VSMC CREB content is diminished in rodent models of diabetes and pulmonary hypertension. We examined aortic CREB content in rodent models of aging, hypertension, and insulin resistance, and we determined nuclear CREB protein in the medial VSMC of high-fat-fed LDL receptor-null mice. There was significant loss of CREB protein in all models. In vitro, primary culture rat aortic VSMC exposed to LDL and oxidized LDL exhibited a rapid, transient increase in CREB phosphorylation and transient phosphorylation/activation of Akt, ERK, JNK, ans p38 MAPK. Exposure to oxidized LDL, but not to LDL, for 24 to 48 hours decreased CREB protein in a dose-dependent fashion and led to nuclear exclusion of CREB. Pharmacological reactive oxygen species scavengers and inhibition of ERK activation blocked oxidized LDL-mediated CREB downregulation. CONCLUSIONS: These data support a model wherein loss of VSMC CREB protein, which renders these cells more susceptible to activation and apoptosis, is a common pathological response to vascular injury and potentially contributes to plaque progression.


Assuntos
Aterosclerose/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Insuficiência Cardíaca/metabolismo , Hipertensão/metabolismo , Lipoproteínas LDL/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fatores Etários , Envelhecimento/metabolismo , Animais , Aorta/metabolismo , Aterosclerose/fisiopatologia , Núcleo Celular/metabolismo , Células Cultivadas , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Regulação para Baixo , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Sequestradores de Radicais Livres/farmacologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Hipertensão/complicações , Hipertensão/fisiopatologia , Resistência à Insulina , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/efeitos dos fármacos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores de LDL/antagonistas & inibidores , Receptores de LDL/deficiência , Receptores de LDL/genética , Medição de Risco , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
J Clin Endocrinol Metab ; 94(10): 3687-95, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19584191

RESUMO

CONTEXT: The incidence of pediatric type 2 diabetes (T2D) is rising, with unclear effects on the cardiovascular system. Cardiopulmonary fitness, a marker of morbidity and mortality, is abnormal in adults with T2D, yet the mechanisms are incompletely understood. OBJECTIVE: We hypothesized that cardiopulmonary fitness would be reduced in youth with T2D in association with insulin resistance (IR) and cardiovascular dysfunction. DESIGN, SETTING, AND PARTICIPANTS: We conducted a cross-sectional study at an academic hospital that included 14 adolescents (age range, 12-19 yr) with T2D, 13 equally obese adolescents and 12 lean adolescents similar in age, pubertal stage, and activity level. MAIN OUTCOME MEASURES: Cardiopulmonary fitness was measured by peak oxygen consumption (VO(2)peak) and oxygen uptake kinetics (VO(2)kinetics), IR by hyperinsulinemic clamp, cardiac function by echocardiography, vascular function by venous occlusion plethysmography, body composition by dual-energy x-ray absorptiometry, intramyocellular lipid by magnetic resonance spectroscopy, and inflammation by serum markers. RESULTS: Adolescents with T2D had significantly decreased VO(2)peak and insulin sensitivity, and increased soleus intramyocellular lipid, C-reactive protein, and IL-6 compared to obese or lean adolescents. Adolescents with T2D also had significantly prolonged VO(2)kinetics, decreased work rate, vascular reactivity, and adiponectin, and increased left ventricular mass and fatty acids compared to lean adolescents. In multivariate linear regression analysis, IR primarily, and fasting free fatty acids and forearm blood flow secondarily, were significant independent predictors of VO(2)peak. CONCLUSIONS: Given the strong relationship between decreased cardiopulmonary fitness and increased mortality, these findings in children are especially concerning and represent early signs of impaired cardiac function.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Tolerância ao Exercício , Resistência à Insulina , Adiponectina/sangue , Adolescente , Biomarcadores/sangue , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Composição Corporal , Distribuição da Gordura Corporal , Proteína C-Reativa/metabolismo , Estudos de Casos e Controles , Criança , Estudos Transversais , Diabetes Mellitus Tipo 2/sangue , Ecocardiografia , Teste de Esforço , Ácidos Graxos não Esterificados/sangue , Feminino , Frequência Cardíaca , Humanos , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Inflamação/sangue , Interleucina-6/sangue , Modelos Lineares , Lipídeos/sangue , Masculino , Atividade Motora , Obesidade/metabolismo , Obesidade/fisiopatologia , Consumo de Oxigênio , Pletismografia , Puberdade , Magreza , Adulto Jovem
19.
J Biol Chem ; 284(21): 14414-27, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19339243

RESUMO

WNT1-inducible signaling pathway protein-1 (WISP1), a member of the CYR61/CTGF/Nov family of growth factors, can mediate cell growth, transformation, and survival. Previously we demonstrated that WISP1 is up-regulated in post-infarct heart, stimulates cardiac fibroblast proliferation, and is induced by the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha). Here we investigated (i) the localization of TNF-alpha and WISP1 in post-infarct heart, (ii) the mechanism of TNF-alpha-mediated WISP1 induction in primary human cardiac fibroblasts (CF), (iii) the role of WISP1 in TNF-alpha-mediated CF proliferation and collagen production, and (iv) the effects of WISP1 on TNF-alpha-mediated cardiomyocyte death. TNF-alpha and WISP1 expressions were increased in the border zones and non-ischemic remote regions of the post-ischemic heart. In CF, TNF-alpha potently induced WISP1 expression in cyclic AMP response element-binding protein (CREB)-dependent manner. TNF-alpha induced CREB phosphorylation in vitro and DNA binding and reporter gene activities in vivo. TNF-alpha induced CREB activation via ERK1/2, and inhibition of ERK1/2 and CREB blunted TNF-alpha-mediated WISP1 induction. Most importantly, WISP1 knockdown attenuated TNF-alpha stimulated collagen production and CF proliferation. Furthermore, WISP1 attenuated TNF-alpha-mediated cardiomyocyte death, thus demonstrating pro-mitogenic and pro-survival effects for WISP1 in myocardial constituent cells. Our results suggest that a TNF-alpha/WISP1 signaling pathway may contribute to post-infarct cardiac remodeling, a condition characterized by fibrosis and progressive cardiomyocyte loss.


Assuntos
Fibroblastos/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitógenos/metabolismo , Miócitos Cardíacos/citologia , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Sequência de Bases , Proteínas de Sinalização Intercelular CCN , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , NF-kappa B/metabolismo , Proteínas Oncogênicas/genética , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
20.
Metabolism ; 58(3): 319-27, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19217446

RESUMO

Vascular smooth muscle cells (VSMC) are dynamic cells exposed to fluctuating concentrations of nutrients on a daily basis. Nonesterified fatty acids (NEFA) have been indicted as potential mediators of atherosclerosis and exaggerated VSMC remodeling observed in diabetes, and in vitro data support a model of VSMC activation by NEFA. However, recent observations suggest that metabolic stressors such as oxidants and NEFA may also simultaneously induce cytoprotective events as part of a homeostatic "off switch." Our group has established that the transcription factor cyclic adenosine monophosphate response element binding protein (CREB) is important for maintenance of VSMC quiescence, differentiation, and survival. We therefore examined whether acute physiologic NEFA exposure would regulate CREB in primary cultures of bovine aortic VSMC and explored the relationship between signaling to the cytoprotective CREB and the activating mitogen-activated protein kinase pathways. In vitro exposure of VSMC to 3 classes of unsaturated NEFA leads to significant acute, transient, dose-dependent, and repeatedly inducible CREB activation. As expected, extracellular signal-regulated kinase, P38 mitogen-activated protein kinase, Akt, Jun N-terminal kinase, and protein kinase C (PKC) pathways are also activated by NEFA. Using a battery of pharmacologic inhibitors and antioxidants, we demonstrate that CREB activation is mediated by a novel PKC isoform and is reactive oxygen species independent, whereas extracellular signal-regulated kinase activation, in contrast, is mediated by reactive oxygen species and is PKC independent. These data suggest parallel and mechanistically distinct stimulation of separate stabilizing and activating pathways in VSMC response to acute NEFA-mediated stress. Furthermore, the down-regulation of CREB in models of chronic metabolic stress reported in the literature would be expected to disrupt this homeostasis and shift the balance toward VSMC activation, consistent with emerging models of atherosclerosis.


Assuntos
Ácidos Graxos não Esterificados/farmacologia , Músculo Liso Vascular/fisiologia , Transdução de Sinais/fisiologia , Animais , Aorta , Bovinos , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA