Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Stem Cell Rev Rep ; 20(5): 1299-1310, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38498294

RESUMO

OBJECTIVE AND DESIGN: Annexin A1 (ANXA1) plays a role in maintaining intestinal hemostasis, especially following mucosal inflammation. The published data about ANXA1 was derived from experimental animal models where there is an overlapping between epithelial and immune cells. There is no in vitro gut epithelial model that can assess the direct effect of ANXA1 on the gut epithelium. METHODS: We developed high-throughput stem-cell-based murine epithelial cells and bacterial lipopolysaccharides (LPS) were used to induce inflammation. The impact of ANXA1 and its functional part (Ac2-26) was evaluated in the inflamed model. Intestinal integrity was assessed by the transepithelial electrical resistance (TEER), and FITC-Dextran permeability. Epithelial junction proteins were assessed using confocal microscopy and RT-qPCR. Inflammatory cytokines were evaluated by RT-qPCR and ELISA. RESULTS: LPS challenge mediated a damage in the epithelial cells as shown by a drop in the TEER and an increase in FITC-dextran permeability; reduced the expression of epithelial junctional proteins (Occludin, ZO-1, and Cadherin) and increased the expression of the gut leaky protein, Claudin - 2. ANXA1 and Ac2-26 treatment reduced the previous damaging effects. In addition, ANXA1 and Ac2-26 inhibited the inflammatory responses mediated by the LPS and increased the transcription of the anti-inflammatory cytokine, IL-10. CONCLUSION: ANXA1 and Ac2-26 directly protect the epithelial integrity by affecting the expression of epithelial junction and inflammatory markers. The inflamed gut model is a reliable tool to study intestinal inflammatory diseases, and to evaluate the efficacy of potential anti-inflammatory drugs and the screening of new drugs that could be candidates for inflammatory bowel disease.


Assuntos
Anexina A1 , Inflamação , Mucosa Intestinal , Lipopolissacarídeos , Anexina A1/metabolismo , Anexina A1/genética , Animais , Lipopolissacarídeos/farmacologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Camundongos , Inflamação/metabolismo , Inflamação/patologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Citocinas/metabolismo , Permeabilidade , Peptídeos
2.
Blood Adv ; 7(21): 6717-6731, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37648671

RESUMO

Red blood cells (RBCs) and platelets contribute to the coagulation capacity in bleeding and thrombotic disorders. The thrombin generation (TG) process is considered to reflect the interactions between plasma coagulation and the various blood cells. Using a new high-throughput method capturing the complete TG curve, we were able to compare TG in whole blood and autologous platelet-rich and platelet-poor plasma to redefine the blood cell contributions to the clotting process. We report a faster and initially higher generation of thrombin and shorter coagulation time in whole blood than in platelet-rich plasma upon low concentrations of coagulant triggers, including tissue factor, Russell viper venom factor X, factor Xa, factor XIa, and thrombin. The TG was accelerated with increased hematocrit and delayed after prior treatment of RBC with phosphatidylserine-blocking annexin A5. RBC treatment with ionomycin increased phosphatidylserine exposure, confirmed by flow cytometry, and increased the TG process. In reconstituted blood samples, the prior selective blockage of phosphatidylserine on RBC with annexin A5 enhanced glycoprotein VI-induced platelet procoagulant activity. For patients with anemia or erythrocytosis, cluster analysis revealed high or low whole-blood TG profiles in specific cases of anemia. The TG profiles lowered upon annexin A5 addition in the presence of RBCs and thus were determined by the extent of phosphatidylserine exposure of blood cells. Profiles for patients with polycythemia vera undergoing treatment were similar to that of control subjects. We concluded that RBC and platelets, in a phosphatidylserine-dependent way, contribute to the TG process. Determination of the whole-blood hypo- or hyper-coagulant activity may help to characterize a bleeding or thrombosis risk.


Assuntos
Anemia , Coagulantes , Trombose , Humanos , Trombina/metabolismo , Fosfatidilserinas , Anexina A5 , Eritrócitos/metabolismo
3.
Sci Rep ; 13(1): 11045, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422517

RESUMO

Loss of neurons in chronic neurodegenerative diseases may occur over a period of many years. Once initiated, neuronal cell death is accompanied by distinct phenotypic changes including cell shrinkage, neurite retraction, mitochondrial fragmentation, nuclear condensation, membrane blebbing and phosphatidylserine (PS) exposure at the plasma membrane. It is still poorly understood which events mark the point of no return for dying neurons. Here we analyzed the neuronal cell line SH-SY5Y expressing cytochrome C (Cyto.C)-GFP. Cells were exposed temporarily to ethanol (EtOH) and tracked longitudinally in time by light and fluorescent microscopy. Exposure to EtOH induced elevation of intracellular Ca2+ and reactive oxygen species, cell shrinkage, neurite retraction, mitochondrial fragmentation, nuclear condensation, membrane blebbing, PS exposure and Cyto.C release into the cytosol. Removing EtOH at predetermined time points revealed that all phenomena except Cyto.C release occurred in a phase of neuronal cell death in which full recovery to a neurite-bearing cell was still possible. Our findings underscore a strategy of treating chronic neurodegenerative diseases by removing stressors from neurons and harnessing intracellular targets that delay or prevent trespassing the point of no return.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Humanos , Citocromos c/metabolismo , Apoptose/fisiologia , Neuroblastoma/metabolismo , Neurônios/metabolismo , Doenças Neurodegenerativas/metabolismo
4.
Cells ; 12(3)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36766767

RESUMO

Annexin A1 (AnxA1) is highly secreted by neutrophils and binds to formyl peptide receptors (FPRs) to trigger anti-inflammatory effects and efferocytosis. AnxA1 is also expressed in the tumor microenvironment, being mainly attributed to cancer cells. As recruited neutrophils are player cells at the tumor sites, the role of neutrophil-derived AnxA1 in lung melanoma metastasis was investigated here. Melanoma cells and neutrophils expressing AnxA1 were detected in biopsies from primary melanoma patients, which also presented higher levels of serum AnxA1 and augmented neutrophil-lymphocyte ratio (NLR) in the blood. Lung melanoma metastatic mice (C57BL/6; i.v. injected B16F10 cells) showed neutrophilia, elevated AnxA1 serum levels, and higher labeling for AnxA1 in neutrophils than in tumor cells at the lungs with metastasis. Peritoneal neutrophils collected from naïve mice were co-cultured with B16F10 cells or employed to obtain neutrophil-conditioned medium (NCM; 18 h incubation). B16F10 cells co-cultured with neutrophils or with NCM presented higher invasion, which was abolished if B16F10 cells were previously incubated with FPR antagonists or co-cultured with AnxA1 knockout (AnxA1-/-) neutrophils. The depletion of peripheral neutrophils during lung melanoma metastasis development (anti-Gr1; i.p. every 48 h for 21 days) reduced the number of metastases and AnxA1 serum levels in mice. Our findings show that AnxA1 secreted by neutrophils favors melanoma metastasis evolution via FPR pathways, addressing AnxA1 as a potential biomarker for the detection or progression of melanoma.


Assuntos
Anexina A1 , Melanoma , Animais , Camundongos , Anexina A1/metabolismo , Melanoma/metabolismo , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Fagocitose , Microambiente Tumoral
5.
Adv Sci (Weinh) ; 10(5): e2203053, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36526599

RESUMO

Acute myocardial infarction (AMI) is accompanied by a systemic trauma response that impacts the whole body, including blood. This study addresses whether macrophages, key players in trauma repair, sense and respond to these changes. For this, healthy human monocyte-derived macrophages are exposed to 20% human AMI (n = 50) or control (n = 20) serum and analyzed by transcriptional and multiparameter functional screening followed by network-guided data interpretation and drug repurposing. Results are validated in an independent cohort at functional level (n = 47 AMI, n = 25 control) and in a public dataset. AMI serum exposure results in an overt AMI signature, enriched in debris cleaning, mitosis, and immune pathways. Moreover, gene networks associated with AMI and with poor clinical prognosis in AMI are identified. Network-guided drug screening on the latter unveils prostaglandin E2 (PGE2) signaling as target for clinical intervention in detrimental macrophage imprinting during AMI trauma healing. The results demonstrate pronounced context-induced macrophage reprogramming by the AMI systemic environment, to a degree decisive for patient prognosis. This offers new opportunities for targeted intervention and optimized cardiovascular disease risk management.


Assuntos
Macrófagos , Infarto do Miocárdio , Humanos , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Prognóstico , Redes Reguladoras de Genes
6.
Eur J Pharm Biopharm ; 181: 49-59, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334840

RESUMO

Annexin A1 (AnxA1), a 37KDa protein, is secreted by inflammatory and epithelial cells and displays anti-inflammatory and wound healing activities in intestinal bowel diseases. Herein, we aimed to functionalize recombinant AnxA1 (AnxA1) on multi-wall lipid core nanocapsules (MLNC) and investigate its effectiveness on experimental colitis. MLNC were prepared by covering lipid core nanocapsules (LNC) with chitosan, which coordinates metals to specific protein chemisorption sites. Therefore, MLNC were linked to Zn2+ and AnxA1 was added to form MLNC-AnxA1. LNC, MLNC and MLNC-AnxA1 presented average size of 129, 152 and 163 nm, respectively, and similar polydispersity indexes (0.xx); incorporation of chitosan inverted the negative potential zeta; the coordination efficiency of AnxA1 was 92.22 %, and transmission electron microscope photomicrograph showed MLNC-AnxA1 had a spherical shape. The effectiveness of MLNC-AnxA1 was measured in Dextran Sulfate Sodium (DSS)-induced colitis in male C57BL/6 mice. DSS (2 % solution) was administered from days 1-6; saline, LNC, MLNC, MLNC-AnxA1 or AnxA1 were administered, once a day, by oral or intraperitoneal (i.p.) routes, from days 6-9. Clinical parameters of the disease were measured from day 0-10 and gut tissues were collected for histopathology, immunohistochemistry and flow cytometry analyses. Only i.p. treatment with MLNC-AnxA1 reduced weight loss, diarrhea and disease activity index, and prevented loss of colonic structure integrity; induced the switch of macrophages into M2 phenotype in the lamina propria; recovered the colonic histoarchitecture by decreasing dysplasia of crypts, inflammation and ulcerations; restored the expression of claudin-1 Zonna-occludens-1 tight junctions in the inflamed gut; and induced stem cell proliferation in intestinal crypts. Associated, data highlight the functionalization of MLNC with AnxA1 as a tool to improve the local actions of such protein in the inflamed gut by inducing resolution of inflammation and tissue repair.


Assuntos
Anexina A1 , Quitosana , Nanocápsulas , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Lipídeos
7.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269792

RESUMO

Neurodegenerative diseases are generally characterized clinically by the selective loss of a distinct subset of neurons and a slow progressive course. Mounting evidence in vivo indicates that large numbers of neurons pass through a long period of injury and dysfunction before the actual death of the cells. Whether these dying neurons can be rescued and return to a normal, functional state is uncertain. In the present study, we explored the reversibility of the neuronal cell death pathway at various stages by monitoring the dynamics of single cells with high-resolution live-cell spinning disk confocal microscopy in an in vitro neuronal cell death model. We exposed differentiated neuronal PC12 cells to ethanol as our cell death model. Results showed that exposure to 5% ethanol for 24 h induced cell death in >70% of the cells. Ethanol treatment for 3 h already induced cellular changes and damage such as reactive oxygen species generation, elevation of intracellular Ca2+ level, phosphatidylserine exposure, nuclear shrinkage, DNA damage, mitochondrial fragmentation and membrane potential loss, and retraction of neurites. These phenomena are often associated with programmed cell death. Importantly, after removing ethanol and further culturing these damaged cells in fresh culture medium, cells recovered from all these cell injuries and generated new neurites. Moreover, results indicated that this recovery was not dependent on exogenous NGF and other growth factors in the cell culture medium. Overall, our results suggest that targeting dying neurons can be an effective therapeutic strategy in neurodegenerative diseases.


Assuntos
Etanol , Análise de Célula Única , Animais , Morte Celular , Meios de Cultura/farmacologia , Etanol/metabolismo , Etanol/farmacologia , Neuritos/metabolismo , Neurônios , Células PC12 , Ratos
8.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216161

RESUMO

The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease, molecules are needed to specifically interfere with the opened VWF A1 domain interaction with GPIbα. Therefore, we in silico designed and chemically synthetized stable cyclic peptides interfering with the platelet-binding of the VWF A1 domain per se or complexed with botrocetin. Selected peptides (26-34 amino acids) with the lowest-binding free energy were: the monocyclic mono- vOn Willebrand factoR-GPIbα InTerference (ORbIT) peptide and bicyclic bi-ORbIT peptide. Interference of the peptides in the binding of VWF to GPIb-V-IX interaction was retained by flow cytometry in comparison with the blocking of anti-VWF A1 domain antibody CLB-RAg35. In collagen and VWF-dependent whole-blood thrombus formation at a high shear rate, CLB-RAg35 suppressed stable platelet adhesion as well as the formation of multilayered thrombi. Both peptides phenotypically mimicked these changes, although they were less potent than CLB-RAg35. The second-round generation of an improved peptide, namely opt-mono-ORbIT (28 amino acids), showed an increased inhibitory activity under flow. Accordingly, our structure-based design of peptides resulted in physiologically effective peptide-based inhibitors, even for convoluted complexes such as GPIbα-VWF A1.


Assuntos
Plaquetas/fisiologia , Peptídeos/química , Agregação Plaquetária , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Fator de von Willebrand/química , Animais , Sítios de Ligação , Plaquetas/metabolismo , Células Cultivadas , Cavalos , Humanos , Microfluídica , Peptídeos/metabolismo , Ligação Proteica , Estresse Mecânico , Fator de von Willebrand/metabolismo
9.
Cardiovasc Res ; 118(5): 1232-1246, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33913468

RESUMO

AIMS: Atherosclerotic plaque hypoxia is detrimental for macrophage function. Prolyl hydroxylases (PHDs) initiate cellular hypoxic responses, possibly influencing macrophage function in plaque hypoxia. Thus, we aimed to elucidate the role of myeloid PHDs in atherosclerosis. METHODS AND RESULTS: Myeloid-specific PHD knockout (PHDko) mice were obtained via bone marrow transplantation (PHD1ko, PHD3ko) or conditional knockdown through lysozyme M-driven Cre recombinase (PHD2cko). Mice were fed high cholesterol diet for 6-12 weeks to induce atherosclerosis. Aortic root plaque size was significantly augmented 2.6-fold in PHD2cko, and 1.4-fold in PHD3ko compared to controls but was unchanged in PHD1ko mice. Macrophage apoptosis was promoted in PHD2cko and PHD3ko mice in vitro and in vivo, via the hypoxia-inducible factor (HIF) 1α/BNIP3 axis. Bulk and single-cell RNA data of PHD2cko bone marrow-derived macrophages (BMDMs) and plaque macrophages, respectively, showed enhanced HIF1α/BNIP3 signalling, which was validated in vitro by siRNA silencing. Human plaque BNIP3 mRNA was positively associated with plaque necrotic core size, suggesting similar pro-apoptotic effects in human. Furthermore, PHD2cko plaques displayed enhanced fibrosis, while macrophage collagen breakdown by matrix metalloproteinases, collagen production, and proliferation were unaltered. Instead, PHD2cko BMDMs enhanced fibroblast collagen secretion in a paracrine manner. In silico analysis of macrophage-fibroblast communication predicted SPP1 (osteopontin) signalling as regulator, which was corroborated by enhanced plaque SPP1 protein in vivo. Increased SPP1 mRNA expression upon PHD2cko was preferentially observed in foamy plaque macrophages expressing 'triggering receptor expressed on myeloid cells-2' (TREM2hi) evidenced by single-cell RNA, but not in neutrophils. This confirmed enhanced fibrotic signalling by PHD2cko macrophages to fibroblasts, in vitro as well as in vivo. CONCLUSION: Myeloid PHD2cko and PHD3ko enhanced atherosclerotic plaque growth and macrophage apoptosis, while PHD2cko macrophages further activated collagen secretion by fibroblasts in vitro, likely via paracrine SPP1 signalling through TREM2hi macrophages.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Apoptose , Aterosclerose/metabolismo , Colágeno/metabolismo , Fibrose , Hipóxia/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo
10.
Cardiovasc Res ; 118(9): 2196-2210, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34273166

RESUMO

AIMS: Smokers are at increased risk of cardiovascular events. However, the exact mechanisms through which smoking influences cardiovascular disease resulting in accelerated atherosclerosis and vascular calcification are unknown. The aim of this study was to investigate effects of nicotine on initiation of vascular smooth muscle cell (VSMC) calcification and to elucidate underlying mechanisms. METHODS AND RESULTS: We assessed vascular calcification of 62 carotid lesions of both smoking and non-smoking patients using ex vivo micro-computed tomography (µCT) scanning. Calcification was present more often in carotid plaques of smokers (n = 22 of 30, 73.3%) compared to non-smokers (n = 11 of 32, 34.3%; P < 0.001), confirming higher atherosclerotic burden. The difference was particularly profound for microcalcifications, which was 17-fold higher in smokers compared to non-smokers. In vitro, nicotine-induced human primary VSMC calcification, and increased osteogenic gene expression (Runx2, Osx, BSP, and OPN) and extracellular vesicle (EV) secretion. The pro-calcifying effects of nicotine were mediated by Ca2+-dependent Nox5. SiRNA knock-down of Nox5 inhibited nicotine-induced EV release and calcification. Moreover, pre-treatment of hVSMCs with vitamin K2 ameliorated nicotine-induced intracellular oxidative stress, EV secretion, and calcification. Using nicotinic acetylcholine receptor (nAChR) blockers α-bungarotoxin and hexamethonium bromide, we found that the effects of nicotine on intracellular Ca2+ and oxidative stress were mediated by α7 and α3 nAChR. Finally, we showed that Nox5 expression was higher in carotid arteries of smokers and correlated with calcification levels in these vessels. CONCLUSION: In this study, we provide evidence that nicotine induces Nox5-mediated pro-calcific processes as novel mechanism of increased atherosclerotic calcification. We identified that activation of α7 and α3 nAChR by nicotine increases intracellular Ca2+ and initiates calcification of hVSMCs through increased Nox5 activity, leading to oxidative stress-mediated EV release. Identifying the role of Nox5-induced oxidative stress opens novel avenues for diagnosis and treatment of smoking-induced cardiovascular disease.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Vesículas Extracelulares , Músculo Liso Vascular , Nicotina , Calcificação Vascular , Aterosclerose/metabolismo , Cálcio/metabolismo , Doenças Cardiovasculares/metabolismo , Células Cultivadas , Vesículas Extracelulares/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 5/metabolismo , NADPH Oxidase 5/farmacologia , Nicotina/efeitos adversos , Nicotina/metabolismo , Estresse Oxidativo , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Microtomografia por Raio-X
11.
Brain ; 144(5): 1526-1541, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34148071

RESUMO

Alzheimer's disease, characterized by brain deposits of amyloid-ß plaques and neurofibrillary tangles, is also linked to neurovascular dysfunction and blood-brain barrier breakdown, affecting the passage of substances into and out of the brain. We hypothesized that treatment of neurovascular alterations could be beneficial in Alzheimer's disease. Annexin A1 (ANXA1) is a mediator of glucocorticoid anti-inflammatory action that can suppress microglial activation and reduce blood-brain barrier leakage. We have reported recently that treatment with recombinant human ANXA1 (hrANXA1) reduced amyloid-ß levels by increased degradation in neuroblastoma cells and phagocytosis by microglia. Here, we show the beneficial effects of hrANXA1 in vivo by restoring efficient blood-brain barrier function and decreasing amyloid-ß and tau pathology in 5xFAD mice and Tau-P301L mice. We demonstrate that young 5xFAD mice already suffer cerebrovascular damage, while acute pre-administration of hrANXA1 rescued the vascular defects. Interestingly, the ameliorated blood-brain barrier permeability in young 5xFAD mice by hrANXA1 correlated with reduced brain amyloid-ß load, due to increased clearance and degradation of amyloid-ß by insulin degrading enzyme (IDE). The systemic anti-inflammatory properties of hrANXA1 were also observed in 5xFAD mice, increasing IL-10 and reducing TNF-α expression. Additionally, the prolonged treatment with hrANXA1 reduced the memory deficits and increased synaptic density in young 5xFAD mice. Similarly, in Tau-P301L mice, acute hrANXA1 administration restored vascular architecture integrity, affecting the distribution of tight junctions, and reduced tau phosphorylation. The combined data support the hypothesis that blood-brain barrier breakdown early in Alzheimer's disease can be restored by hrANXA1 as a potential therapeutic approach.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Anexina A1/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Animais , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Permeabilidade Capilar , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos
12.
J Thromb Haemost ; 19(7): 1607-1617, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33773016

RESUMO

BACKGROUND: Peptidyl arginine deiminase 4 (PAD4) is an enzyme that converts arginine into citrulline. PAD4 is expressed in neutrophils that, when activated, can drive the formation of neutrophil extracellular traps (NETs). Uncontrolled activation of PAD4 and subsequent citrullination of proteins is increasingly recognized as a driver of (auto)immune diseases. Currently, our understanding of PAD4 structure-function relationships and activity control in vivo is incomplete. AIMS: To provide the current state-of-the-art on PAD4 structure-activity relationships and involvement of PAD4 in autoimmune disorders as well as in thrombo-inflammatory disease. MATERIALS & METHODS: Literature review and molecular modelling Results: In this review, we used molecular modelling to generate a three-dimensional structure of the complete PAD4 molecule. Using our model, we discuss the catalytic conversion of the arginine substrate to citrulline. Besides mechanistic insight into PAD4 function, we give an overview of biological functions of PAD4 and mechanisms that influence its activation. In addition, we discuss the crucial role of PAD4-mediated citrullination of histones during the formation of NETs. Subsequently, we focus on the role of PAD4-mediated NET formation and its role in pathogenesis of rheumatoid arthritis, sepsis and (immune-)thrombosis. Finally, we summarize current efforts to design different classes of PAD4 inhibitors that are being developed for improved treatment of autoimmune disorders as well as thrombo-inflammatory disease. DISCUSSION: Advances in PAD4 structure-function are still necessary to gain a complete insight in mechanisms that control PAD4 activity in vivo. The involvement of PAD4 in several diseases signifies the need for a PAD4 inhibitor. Although progress has been made to produce an isotype specific and potent PAD4 inhibitor, currently no PAD4 inhibitor is ready for clinical use. CONCLUSION: More research into PAD4 structure and function and into the regulation of its activity is required for the development of PAD4 specific inhibitors that may prove vital to combat and prevent autoimmune disorders and (thrombo)inflammatory disease.


Assuntos
Artrite Reumatoide , Armadilhas Extracelulares , Artrite Reumatoide/tratamento farmacológico , Histonas , Humanos , Ativação de Neutrófilo , Neutrófilos , Proteína-Arginina Desiminase do Tipo 4
13.
Clin J Am Soc Nephrol ; 15(12): 1740-1748, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33203735

RESUMO

BACKGROUND AND OBJECTIVES: ANCA-associated GN is a common cause of rapidly progressive GN, with high relapse rates. The early recognition of an ANCA-associated GN relapse is of importance to prevent loss of kidney function. Urinary soluble CD163 has been identified as a promising marker of active ANCA-associated GN. Previous studies, however, are limited by the lack of histologic data. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: We analyzed urinary soluble CD163 in 95 patients with ANCA-associated vasculitis who underwent a kidney biopsy. In total, 125 kidney tissue sections (first kidney biopsy, n=67; repeated biopsy, n=58) with concurrent 24-hour urine samples were studied. Correlation analyses comparing urinary soluble CD163 levels and morphologic features of ANCA-associated GN were performed using Spearman rank correlation analysis. The diagnostic performance of biomarkers to detect relapsing ANCA-associated GN was evaluated using receiver operating characteristics curve analysis. RESULTS: High levels of urinary soluble CD163 were found in 96 (87%) of 110 biopsies with active ANCA-associated GN compared with one (7%) of 15 biopsies without active ANCA-associated GN and one (6%) of 17 healthy controls. Urinary soluble CD163 correlated with fibrinoid necrosis (Rho=0.48, P<0.001) and cellular crescents (Rho=0.70, P<0.001) on kidney biopsy. In repeated biopsies, urinary soluble CD163's sensitivity of 0.94 and specificity of 0.91 for the recognition of relapsing ANCA-associated GN appeared better than routine clinical measures. The presence of CD163+ cells in affected glomeruli confirmed urinary soluble CD163's origin. CONCLUSIONS: Urinary soluble CD163 is associated with active ANCA-associated GN and correlates with histologic features as seen in ANCA-associated GN. PODCAST: This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2020_11_17_CJN07210520_final.mp3.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Antígenos CD/urina , Antígenos de Diferenciação Mielomonocítica/urina , Glomerulonefrite/imunologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/patologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/urina , Biomarcadores/urina , Biópsia , Feminino , Glomerulonefrite/patologia , Glomerulonefrite/urina , Humanos , Masculino , Valor Preditivo dos Testes , Receptores de Superfície Celular , Sistema de Registros , Urinálise
14.
Thromb Haemost ; 120(10): 1371-1383, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32820487

RESUMO

Heparins represent one of the most frequently used pharmacotherapeutics. Discovered around 1926, routine clinical anticoagulant use of heparin was initiated only after the publication of several seminal papers in the early 1970s by the group of Kakkar. It was shown that heparin prevents venous thromboembolism and mortality from pulmonary embolism in patients after surgery. With the subsequent development of low-molecular-weight heparins and synthetic heparin derivatives, a family of related drugs was created that continues to prove its clinical value in thromboprophylaxis and in prevention of clotting in extracorporeal devices. Fundamental and applied research has revealed a complex pharmacodynamic profile of heparins that goes beyond its anticoagulant use. Recognition of the complex multifaceted beneficial effects of heparin underscores its therapeutic potential in various clinical situations. In this review we focus on the anticoagulant and nonanticoagulant activities of heparin and, where possible, discuss the underlying molecular mechanisms that explain the diversity of heparin's biological actions.


Assuntos
Anti-Inflamatórios/farmacologia , Anticoagulantes/farmacologia , Antineoplásicos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Heparina/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Anticoagulantes/química , Anticoagulantes/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Heparina/análogos & derivados , Heparina/uso terapêutico , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Moleculares , Metástase Neoplásica/prevenção & controle
15.
Cells ; 9(5)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403233

RESUMO

Embryo implantation into the uterine wall is a highly modulated, complex process. We previously demonstrated that Annexin A1 (AnxA1), which is a protein secreted by epithelial and inflammatory cells in the uterine microenvironment, controls embryo implantation in vivo. Here, we decipher the effects of recombinant AnxA1 in this phenomenon by using human trophoblast cell (BeWo) spheroids and uterine epithelial cells (Ishikawa; IK). AnxA1-treated IK cells demonstrated greater levels of spheroid adherence and upregulation of the tight junction molecules claudin-1 and zona occludens-1, as well as the glycoprotein mucin-1 (Muc-1). The latter effect of AnxA1 was not mediated through IL-6 secreted from IK cells, a known inducer of Muc-1 expression. Rather, these effects of AnxA1 involved activation of the formyl peptide receptors FPR1 and FPR2, as pharmacological blockade of FPR1 or FPR1/FPR2 abrogated such responses. The downstream actions of AnxA1 were mediated through the ERK1/2 phosphorylation pathway and F-actin polymerization in IK cells, as blockade of ERK1/2 phosphorylation reversed AnxA1-induced Muc-1 and claudin-1 expression. Moreover, FPR2 activation by AnxA1 induced vascular endothelial growth factor (VEGF) secretion by IK cells, and the supernatant of AnxA1-treated IK cells evoked angiogenesis in vitro. In conclusion, these data highlight the role of the AnxA1/FPR1/FPR2 pathway in uterine epithelial control of blastocyst implantation.


Assuntos
Anexina A1/metabolismo , Blastocisto/metabolismo , Receptores de Formil Peptídeo/metabolismo , Útero/fisiologia , Actinas/metabolismo , Animais , Linhagem Celular , Claudina-1/metabolismo , Implantação do Embrião , Células Epiteliais/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Mucina-1/metabolismo , Neovascularização Fisiológica , Polimerização , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
16.
Hypertension ; 75(2): 422-430, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31865800

RESUMO

Hypertensive emergency can cause thrombotic microangiopathy (TMA) in the kidneys with high rates of end-stage renal disease (ESRD) and vice versa. The conundrum of hypertension as the cause of TMA or consequence of TMA on the background of defects in complement regulation remains difficult. Patients with hypertensive emergency and TMA on kidney biopsy were tested for ex vivo C5b9 formation on the endothelium and rare variants in complement genes to identify complement-mediated TMA. We identified factors associated with defects in complement regulation and poor renal outcomes. Massive ex vivo C5b9 formation was found on resting endothelial cells in 18 (69%) out of 26 cases at the presentation, including the 9 patients who carried at least one rare genetic variant. Thirteen (72%, N=18) and 3 (38%, N=8) patients with massive and normal ex vivo complement activation, respectively, progressed to ESRD (P=0.03). In contrast to BP control, inhibition of C5 activation prevented ESRD to occur in 5 (83%, N=6) patients with massive ex vivo complement activation. TMA-related graft failure occurred in 7 (47%, N=15) donor kidneys and was linked to genetic variants. The assessment of both ex vivo C5b9 formation and screening for rare variants in complement genes may categorize patients with hypertensive emergency and TMA into different groups with potential therapeutic and prognostic implications. We propose an algorithm to recognize patients at the highest risk for defects in complement regulation.


Assuntos
Pressão Sanguínea/fisiologia , Ativação do Complemento/fisiologia , Proteínas do Sistema Complemento/metabolismo , Emergências , Hipertensão Maligna/complicações , Rim/patologia , Microangiopatias Trombóticas/diagnóstico , Adulto , Biópsia , Células Endoteliais/patologia , Feminino , Humanos , Hipertensão Maligna/diagnóstico , Falência Renal Crônica/complicações , Falência Renal Crônica/diagnóstico , Masculino , Prognóstico , Reprodutibilidade dos Testes , Fatores de Risco , Microangiopatias Trombóticas/etiologia , Microangiopatias Trombóticas/metabolismo
17.
Kidney Int ; 97(3): 609-614, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31784048

RESUMO

Pathological deposition of collagen is a hallmark of kidney fibrosis. To illustrate this process we employed multimodal optical imaging to visualize and quantify collagen deposition in murine models of kidney fibrosis (ischemia-reperfusion or unilateral ureteral obstruction) using the collagen-binding adhesion protein CNA35. For in vivo imaging, we used hybrid computed tomography-fluorescence molecular tomography and CNA35 labeled with the near-infrared fluorophore Cy7. Upon intravenous injection, CNA35-Cy7 accumulation was significantly higher in fibrotic compared to non-fibrotic kidneys. This difference was not detected for a non-specific scrambled version of CNA35-Cy7. Ex vivo, on kidney sections of mice and patients with renal fibrosis, CNA35-FITC co-localized with fibrotic collagen type I and III, but not with the basement membrane collagen type IV. Following intravenous injection, CNA35-FITC bound to both interstitial and perivascular fibrotic areas. In line with this perivascular accumulation, we observed significant perivascular fibrosis in the mouse models and in biopsy sections from patients with chronic kidney disease using computer-based morphometry quantification. Thus, molecular imaging of collagen using CNA35 enabled specific non-invasive quantification of kidney fibrosis. Collagen imaging revealed significant perivascular fibrosis as a consistent component next to the more commonly assessed interstitial fibrosis. Our results lay the basis for further probe and protocol optimization towards the clinical translation of molecular imaging of kidney fibrosis.


Assuntos
Proteínas de Transporte , Obstrução Ureteral , Animais , Colágeno/metabolismo , Fibrose , Humanos , Rim/patologia , Camundongos , Imagem Molecular , Obstrução Ureteral/patologia
18.
FASEB J ; 33(12): 13998-14009, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31618599

RESUMO

Immune changes occur in experimental and clinical epilepsy. Here, we tested the hypothesis that during epileptogenesis and spontaneous recurrent seizures (SRS) an impairment of the endogenous anti-inflammatory pathway glucocorticoid receptor (GR)-annexin A1 (ANXA1) occurs. By administrating exogenous ANXA1, we studied whether pharmacological potentiation of the anti-inflammatory response modifies seizure activity and pathophysiology. We used an in vivo model of temporal lobe epilepsy based on intrahippocampal kainic acid (KA) injection. Video-electroencephalography, molecular biology analyses on brain and peripheral blood samples, and pharmacological investigations were performed in this model. Human epileptic cortices presenting type II focal cortical dysplasia (IIa and b), hippocampi with or without hippocampal sclerosis (HS), and available controls were used to study ANXA1 expression. A decrease of phosphorylated (phospho-) GR and phospho-GR/tot-GR protein expression occurred in the hippocampus during epileptogenesis. Downstream to GR, the anti-inflammatory protein ANXA1 remained at baseline levels while inflammation installed and endured. In peripheral blood, ANXA1 and corticosterone levels showed no significant modifications during disease progression except for an early and transient increase poststatus epilepticus. These results indicate inadequate ANXA1 engagement over time and in these experimental conditions. By analyzing human brain specimens, we found that where significant inflammation exists, the pattern of ANXA1 immunoreactivity was abnormal because the typical perivascular ANXA1 immunoreactivity was reduced. We next asked whether potentiation of the endogenous anti-inflammatory mechanism by ANXA1 administration modifies the disease pathophysiology. Although with varying efficacy, administration of exogenous ANXA1 somewhat reduced the time spent in seizure activity as compared to saline. These results indicate that the anti-inflammatory GR-ANXA1 pathway is defective during experimental seizure progression. The prospect of pharmacologically restoring or potentiating this endogenous anti-inflammatory mechanism as an add-on therapeutic strategy for specific forms of epilepsy is proposed.-Zub, E., Canet, G., Garbelli, R., Blaquiere, M., Rossini, L., Pastori, C., Sheikh, M., Reutelingsperger, C., Klement, W., de Bock, F., Audinat, E., Givalois, L., Solito, E., Marchi, N. The GR-ANXA1 pathway is a pathological player and a candidate target in epilepsy.


Assuntos
Anexina A1/metabolismo , Epilepsia , Receptores de Glucocorticoides/metabolismo , Animais , Anexina A1/genética , Contagem de Células Sanguíneas , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Corticosterona/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hipocampo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Ácido Caínico/administração & dosagem , Ácido Caínico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides/genética
19.
Sci Rep ; 9(1): 14547, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601924

RESUMO

The anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1) plays an important role in survival and differentiation of leukocytes, more specifically of neutrophils. Here, we investigated the impact of myeloid Mcl-1 deletion in atherosclerosis. Western type diet fed LDL receptor-deficient mice were transplanted with either wild-type (WT) or LysMCre Mcl-1fl/fl (Mcl-1-/-) bone marrow. Mcl-1 myeloid deletion resulted in enhanced apoptosis and lipid accumulation in atherosclerotic plaques. In vitro, Mcl-1 deficient macrophages also showed increased lipid accumulation, resulting in increased sensitivity to lipid-induced cell death. However, plaque size, necrotic core and macrophage content were similar in Mcl-1-/- compared to WT mice, most likely due to decreased circulating and plaque-residing neutrophils. Interestingly, Mcl-1-/- peritoneal foam cells formed up to 45% more multinucleated giant cells (MGCs) in vitro compared to WT, which concurred with an increased MGC presence in atherosclerotic lesions of Mcl-1-/- mice. Moreover, analysis of human unstable atherosclerotic lesions also revealed a significant inverse correlation between MGC lesion content and Mcl-1 gene expression, coinciding with the mouse data. Taken together, these findings suggest that myeloid Mcl-1 deletion leads to a more apoptotic, lipid and MGC-enriched phenotype. These potentially pro-atherogenic effects are however counteracted by neutropenia in circulation and plaque.


Assuntos
Apoptose , Células Gigantes/citologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Células 3T3 , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Diferenciação Celular , Deleção de Genes , Humanos , Imuno-Histoquímica , Lipídeos/química , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Neutrófilos/metabolismo , Fenótipo , Placa Aterosclerótica/metabolismo
20.
J Am Coll Cardiol ; 73(23): 2990-3002, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31196457

RESUMO

BACKGROUND: Heart failure following myocardial infarction (MI) remains one of the major causes of death worldwide, and its treatment is a crucial challenge of cardiovascular medicine. An attractive therapeutic strategy is to stimulate endogenous mechanisms of myocardial regeneration. OBJECTIVES: This study evaluates the potential therapeutic treatment with annexin A1 (AnxA1) to induce cardiac repair after MI. METHODS: AnxA1 knockout (AnxA1-/-) and wild-type mice underwent MI induced by ligation of the left anterior descending coronary artery. Cardiac functionality was assessed by longitudinal echocardiographic measurements. Histological, fluorescence-activated cell sorting, dot blot analysis, and in vitro/ex vivo studies were used to assess the myocardial neovascularization, macrophage content, and activity in response to AnxA1. RESULTS: AnxA1-/- mice showed a reduced cardiac functionality and an expansion of proinflammatory macrophages in the ischemic area. Cardiac macrophages from AnxA1-/- mice exhibited a dramatically reduced ability to release the proangiogenic mediator vascular endothelial growth factor (VEGF)-A. However, AnxA1 treatment enhanced VEGF-A release from cardiac macrophages, and its delivery in vivo markedly improved cardiac performance. The positive effect of AnxA1 treatment on cardiac performance was abolished in wild-type mice transplanted with bone marrow derived from Cx3cr1creERT2Vegfflox/flox or in mice depleted of macrophages. Similarly, cardioprotective effects of AnxA1 were obtained in pigs in which full-length AnxA1 was overexpressed by use of a cardiotropic adeno-associated virus. CONCLUSIONS: AnxA1 has a direct action on cardiac macrophage polarization toward a pro-angiogenic, reparative phenotype. AnxA1 stimulated cardiac macrophages to release high amounts of VEGF-A, thus inducing neovascularization and cardiac repair.


Assuntos
Anexina A1/deficiência , Macrófagos/fisiologia , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Neovascularização Fisiológica/fisiologia , Fenótipo , Animais , Anexina A1/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/genética , Miocárdio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA