Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
2.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38649187

RESUMO

All cancer cells reprogram metabolism to support aberrant growth. Here, we report that cancer cells employ and depend on imbalanced and dynamic heme metabolic pathways, to accumulate heme intermediates, that is, porphyrins. We coined this essential metabolic rewiring "porphyrin overdrive" and determined that it is cancer-essential and cancer-specific. Among the major drivers are genes encoding mid-step enzymes governing the production of heme intermediates. CRISPR/Cas9 editing to engineer leukemia cell lines with impaired heme biosynthetic steps confirmed our whole-genome data analyses that porphyrin overdrive is linked to oncogenic states and cellular differentiation. Although porphyrin overdrive is absent in differentiated cells or somatic stem cells, it is present in patient-derived tumor progenitor cells, demonstrated by single-cell RNAseq, and in early embryogenesis. In conclusion, we identified a dependence of cancer cells on non-homeostatic heme metabolism, and we targeted this cancer metabolic vulnerability with a novel "bait-and-kill" strategy to eradicate malignant cells.


Assuntos
Sistemas CRISPR-Cas , Heme , Porfirinas , Humanos , Heme/metabolismo , Porfirinas/metabolismo , Porfirinas/farmacologia , Linhagem Celular Tumoral , Neoplasias/metabolismo , Neoplasias/genética , Redes e Vias Metabólicas/genética , Diferenciação Celular/genética , Edição de Genes , Animais , Camundongos
3.
Am J Hematol ; 99(6): 1040-1055, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38440831

RESUMO

Myeloproliferative neoplasms (MPNs), including polycythemia vera, essential thrombocytosis, and primary myelofibrosis, are clonal hematopoietic neoplasms driven by mutationally activated signaling by the JAK2 tyrosine kinase. Although JAK2 inhibitors can improve MPN patients' quality of life, they do not induce complete remission as disease-driving cells persistently survive therapy. ERK activation has been highlighted as contributing to JAK2 inhibitor persistent cell survival. As ERK is a component of signaling by activated RAS proteins and by JAK2 activation, we sought to inhibit RAS activation to enhance responses to JAK2 inhibition in preclinical MPN models. We found the SHP2 inhibitor RMC-4550 significantly enhanced growth inhibition of MPN cell lines in combination with the JAK2 inhibitor ruxolitinib, effectively preventing ruxolitinib persistent growth, and the growth and viability of established ruxolitinib persistent cells remained sensitive to SHP2 inhibition. Both SHP2 and JAK2 inhibition diminished cellular RAS-GTP levels, and their concomitant inhibition enhanced ERK inactivation and increased apoptosis. Inhibition of SHP2 inhibited the neoplastic growth of MPN patient hematopoietic progenitor cells and exhibited synergy with ruxolitinib. RMC-4550 antagonized MPN phenotypes and increased survival of an MPN mouse model driven by MPL-W515L. The combination of RMC-4550 and ruxolitinib, which was safe and tolerated in healthy mice, further inhibited disease compared to ruxolitinib monotherapy, including extending survival. Given SHP2 inhibitors are undergoing clinical evaluation in patients with solid tumors, our preclinical findings suggest that SHP2 is a candidate therapeutic target with potential for rapid translation to clinical assessment to improve current targeted therapies for MPN patients.


Assuntos
Janus Quinase 2 , Transtornos Mieloproliferativos , Nitrilas , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Pirazóis , Pirimidinas , Janus Quinase 2/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Animais , Transtornos Mieloproliferativos/tratamento farmacológico , Humanos , Camundongos , Nitrilas/uso terapêutico , Pirazóis/uso terapêutico , Pirazóis/farmacologia , Pirimidinas/uso terapêutico , Pirimidinas/farmacologia , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
4.
Clin Cancer Res ; 29(15): 2919-2932, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37223910

RESUMO

PURPOSE: Preclinical studies in myeloid neoplasms have demonstrated efficacy of bromodomain and extra-terminal protein inhibitors (BETi). However, BETi demonstrates poor single-agent activity in clinical trials. Several studies suggest that combination with other anticancer inhibitors may enhance the efficacy of BETi. EXPERIMENTAL DESIGN: To nominate BETi combination therapies for myeloid neoplasms, we used a chemical screen with therapies currently in clinical cancer development and validated this screen using a panel of myeloid cell line, heterotopic cell line models, and patient-derived xenograft models of disease. We used standard protein and RNA assays to determine the mechanism responsible for synergy in our disease models. RESULTS: We identified PIM inhibitors (PIMi) as therapeutically synergistic with BETi in myeloid leukemia models. Mechanistically, we show that PIM kinase is increased after BETi treatment, and that PIM kinase upregulation is sufficient to induce persistence to BETi and sensitize cells to PIMi. Furthermore, we demonstrate that miR-33a downregulation is the underlying mechanism driving PIM1 upregulation. We also show that GM-CSF hypersensitivity, a hallmark of chronic myelomonocytic leukemia (CMML), represents a molecular signature for sensitivity to combination therapy. CONCLUSIONS: Inhibition of PIM kinases is a potential novel strategy for overcoming BETi persistence in myeloid neoplasms. Our data support further clinical investigation of this combination.


Assuntos
Leucemia Mielomonocítica Crônica , MicroRNAs , Humanos , Linhagem Celular Tumoral , Proteínas , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Blood Cancer J ; 12(1): 13, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082276

RESUMO

The Philadelphia chromosome negative myeloproliferative neoplasms, including polycythemia vera, essential thrombocytosis, and myelofibrosis, are driven by hyper activation of the JAK2 tyrosine kinase, the result of mutations in three MPN driving genes: JAK2, MPL, and CALR. While the anti-inflammatory effects of JAK2 inhibitors can provide improved quality of life for many MPN patients, the upfront and persistent survival of disease-driving cells in MPN patients undergoing JAK2 inhibitor therapy thwarts potential for remission. Early studies indicated JAK2 inhibitor therapy induces heterodimeric complex formation of JAK2 with other JAK family members leading to sustained JAK2-dependent signaling. Recent work has described novel cell intrinsic details as well as cell extrinsic mechanisms that may contribute to why JAK2 inhibition may be ineffective at targeting MPN driving cells. Diverse experimental strategies aimed at uncovering mechanistic details that contribute to JAK2 inhibitor persistence have each highlighted the role of MEK/ERK activation. These approaches include, among others, phosphoproteomic analyses of JAK2 signaling as well as detailed assessment of JAK2 inhibition in mouse models of MPN. In this focused review, we highlight these and other studies that collectively suggest targeting MEK/ERK in combination with JAK2 inhibition has the potential to improve the efficacy of JAK2 inhibitors in MPN patients. As MPN patients patiently wait for improved therapies, such studies should further strengthen optimism that pre-clinical research is continuing to uncover mechanistic insights regarding the ineffectiveness of JAK2 inhibitors, which may lead to development of improved therapeutic strategies.


Assuntos
Janus Quinase 2/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transtornos Mieloproliferativos/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Ativação Enzimática/efeitos dos fármacos , Humanos , Janus Quinase 2/metabolismo , Transtornos Mieloproliferativos/metabolismo , Policitemia Vera/tratamento farmacológico , Policitemia Vera/metabolismo , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Trombocitemia Essencial/tratamento farmacológico , Trombocitemia Essencial/metabolismo
6.
J Med Chem ; 64(4): 2228-2241, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33570945

RESUMO

The discovery that aberrant activity of Janus kinase 2 (JAK2) is a driver of myeloproliferative neoplasms (MPNs) has led to significant efforts to develop small molecule inhibitors for this patient population. Ruxolitinib and fedratinib have been approved for use in MPN patients, while baricitinib, an achiral analogue of ruxolitinib, has been approved for rheumatoid arthritis. However, structural information on the interaction of these therapeutics with JAK2 remains unknown. Here, we describe a new methodology for the large-scale production of JAK2 from mammalian cells, which enabled us to determine the first crystal structures of JAK2 bound to these drugs and derivatives thereof. Along with biochemical and cellular data, the results provide a comprehensive view of the shape complementarity required for chiral and achiral inhibitors to achieve highest activity, which may facilitate the development of more effective JAK2 inhibitors as therapeutics.


Assuntos
Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirrolidinas/farmacologia , Sulfonamidas/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Janus Quinase 2/metabolismo , Estrutura Molecular , Nitrilas , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Pirazóis/química , Pirazóis/metabolismo , Pirimidinas , Pirrolidinas/química , Pirrolidinas/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/metabolismo
7.
Front Immunol ; 11: 604142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329600

RESUMO

The Janus kinase 2 (JAK2)-driven myeloproliferative neoplasms (MPNs) are associated with clonal myelopoiesis, elevated risk of death due to thrombotic complications, and transformation to acute myeloid leukemia (AML). JAK2 inhibitors improve the quality of life for MPN patients, but these approved therapeutics do not readily reduce the natural course of disease or antagonize the neoplastic clone. An understanding of the molecular and cellular changes requisite for MPN development and progression are needed to develop improved therapies. Recently, murine MPN models were demonstrated to exhibit metabolic vulnerabilities due to a high dependence on glucose. Neoplastic hematopoietic progenitor cells in these mice express elevated levels of glycolytic enzymes and exhibit enhanced levels of glycolysis and oxidative phosphorylation, and the disease phenotype of these MPN model mice is antagonized by glycolytic inhibition. While all MPN-driving mutations lead to aberrant JAK2 activation, these mutations often co-exist with mutations in genes that encode epigenetic regulators, including loss of function mutations known to enhance MPN progression. In this perspective we discuss how altered activity of epigenetic regulators (e.g., methylation and acetylation) in MPN-driving stem and progenitor cells may alter cellular metabolism and contribute to the MPN phenotype and progression of disease. Specific metabolic changes associated with epigenetic deregulation may identify patient populations that exhibit specific metabolic vulnerabilities that are absent in normal hematopoietic cells, and thus provide a potential basis for the development of more effective personalized therapeutic approaches.


Assuntos
Biomarcadores Tumorais/genética , Metabolismo Energético , Epigênese Genética , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Inibidores de Janus Quinases/uso terapêutico , Terapia de Alvo Molecular , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/metabolismo , Neoplasias/metabolismo , Fenótipo
8.
Proteomics ; 20(24): e2000116, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32865326

RESUMO

Analysis of tyrosine kinase signaling is critical for the development of targeted cancer therapy. Currently, immunoprecipitation of phosphotyrosine (pY) peptides prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) is used to profile tyrosine kinase substrates. A typical protocol requests 10 mg of total protein from ≈108 cells or 50-100 mg of tissue. Large sample requirements can be cost prohibitive or not feasible for certain experiments. Sample multiplexing using chemical labeling reduces the protein amount required for each sample, and newer approaches use a material-rich reference channel as a calibrator to trigger detection and quantification for smaller samples. Here, it is demonstrated that the tandem mass tag (TMT) calibrator approach reduces the sample input for pY profiling tenfold (to ≈1 mg total protein per sample from 107 cells grown in one plate), while maintaining the depth of pY proteome sampling and the biological content of the experiment. Data are available through PRIDE (PXD019764 for label-free and PXD018952 for TMT). This strategy opens more opportunities for pY profiling of large sample cohorts and samples with limited protein quantity such as immune cells, xenograft models, and human tumors.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Humanos , Proteínas Tirosina Quinases , Proteoma
9.
Cancers (Basel) ; 12(8)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823910

RESUMO

Myelofibrosis (MF) is a myeloproliferative neoplasm hallmarked by the upregulation of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway with associated extramedullary hematopoiesis and a high burden of disease-related symptoms. While JAK inhibitor therapy is central to the management of MF, it is not without limitations. In an effort to improve treatment for MF patients, there have been significant efforts to identify combination strategies that build upon the substantial benefits of JAK inhibition. Early efforts to combine agents with additive therapeutic profiles have given way to rationally designed combinations hoping to demonstrate clinical synergism and modify the underlying disease. In this article, we review the preclinical basis and existing clinical data for JAK inhibitor combination strategies while highlighting emerging strategies of particular interest.

10.
Blood ; 135(3): 191-207, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31750881

RESUMO

Protein acetylation is an important contributor to cancer initiation. Histone deacetylase 6 (HDAC6) controls JAK2 translation and protein stability and has been implicated in JAK2-driven diseases best exemplified by myeloproliferative neoplasms (MPNs). By using novel classes of highly selective HDAC inhibitors and genetically deficient mouse models, we discovered that HDAC11 rather than HDAC6 is necessary for the proliferation and survival of oncogenic JAK2-driven MPN cells and patient samples. Notably, HDAC11 is variably expressed in primitive stem cells and is expressed largely upon lineage commitment. Although Hdac11is dispensable for normal homeostatic hematopoietic stem and progenitor cell differentiation based on chimeric bone marrow reconstitution, Hdac11 deficiency significantly reduced the abnormal megakaryocyte population, improved splenic architecture, reduced fibrosis, and increased survival in the MPLW515L-MPN mouse model during primary and secondary transplantation. Therefore, inhibitors of HDAC11 are an attractive therapy for treating patients with MPN. Although JAK2 inhibitor therapy provides substantial clinical benefit in MPN patients, the identification of alternative therapeutic targets is needed to reverse MPN pathogenesis and control malignant hematopoiesis. This study establishes HDAC11 as a unique type of target molecule that has therapeutic potential in MPN.


Assuntos
Hematopoese , Histona Desacetilases/fisiologia , Mutação , Transtornos Mieloproliferativos/patologia , Oncogenes , Animais , Apoptose , Ciclo Celular , Proliferação de Células , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Humanos , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Células Tumorais Cultivadas
11.
Blood Adv ; 3(22): 3503-3514, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31725895

RESUMO

Aberrant JAK2 tyrosine kinase signaling drives the development of Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), including polycythemia vera, essential thrombocythemia, and primary myelofibrosis. However, JAK2 kinase inhibitors have failed to significantly reduce allele burden in MPN patients, underscoring the need for improved therapeutic strategies. Members of the PIM family of serine/threonine kinases promote cellular proliferation by regulating a variety of cellular processes, including protein synthesis and the balance of signaling that regulates apoptosis. Overexpression of PIM family members is oncogenic, exemplified by their ability to induce lymphomas in collaboration with c-Myc. Thus, PIM kinases are potential therapeutic targets for several malignancies such as solid tumors and blood cancers. We and others have shown that PIM inhibitors augment the efficacy of JAK2 inhibitors by using in vitro models of MPNs. Here we report that the recently developed pan-PIM inhibitor INCB053914 augments the efficacy of the US Food and Drug Administration-approved JAK1/2 inhibitor ruxolitinib in both in vitro and in vivo MPN models. INCB053914 synergizes with ruxolitinib to inhibit cell growth in JAK2-driven MPN models and induce apoptosis. Significantly, low nanomolar INCB053914 enhances the efficacy of ruxolitinib to inhibit the neoplastic growth of primary MPN patient cells, and INCB053914 antagonizes ruxolitinib persistent myeloproliferation in vivo. These findings support the notion that INCB053914, which is currently in clinical trials in patients with advanced hematologic malignancies, in combination with ruxolitinib may be effective in MPN patients, and they support the clinical testing of this combination in MPN patients.


Assuntos
Inibidores de Janus Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Pirazóis/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Xenoenxertos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Nitrilas , Pirimidinas , Transdução de Sinais/efeitos dos fármacos
12.
FEBS Open Bio ; 9(10): 1689-1704, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31314158

RESUMO

Lung cancer patients with mutations in epidermal growth factor receptor (EGFR) benefit from treatments targeting tyrosine kinase inhibitors (TKIs). However, both intrinsic and acquired resistance of tumors to TKIs are common, and EGFR variants have been identified that are resistant to multiple TKIs. In the present study, we characterized selected EGFR variants previously observed in lung cancer patients and expressed in a murine bone marrow pro-B Ba/F3 cell model. Among these EGFR variants, we report that an exon 20 deletion/insertion mutation S768insVGH is resistant to erlotinib (a first-generation TKI), but sensitive to osimertinib (a third-generation TKI). We also characterized a rare exon 21 germline variant, EGFR P848L, which transformed Ba/F3 cells and conferred resistance to multiple EGFR-targeting TKIs. Our analysis revealed that P848L (a) does not bind erlotinib; (b) is turned over less rapidly than L858R (a common tumor-derived EGFR mutation); (c) is not autophosphorylated at Tyr 1045 [the major docking site for Cbl proto-oncogene (c-Cbl) binding]; and (d) does not bind c-Cbl. Using viability assays including 300 clinically relevant targeted compounds, we observed that Ba/F3 cells transduced with EGFR P848L, S768insVGH, or L858R have very different drug-sensitivity profiles. In particular, EGFR P848L, but not L858R or S768insVGH, was sensitive to multiple Janus kinase 1/2 inhibitors. In contrast, cells driven by L858R, but not by P848L, were sensitive to multikinase MAPK/extracellular-signal-regulated kinase (ERK) kinase and ERK inhibitors including EGFR-specific TKIs. These observations suggest that continued investigation of rare TKI-resistant EGFR variants is warranted to identify optimal treatments for cancer.


Assuntos
Modelos Animais de Doenças , Variação Genética/genética , Neoplasias Pulmonares/genética , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Mutação , Nitrilas , Inibidores de Proteínas Quinases/farmacologia , Proto-Oncogene Mas , Pirazóis/farmacologia , Pirimidinas/farmacologia
13.
PLoS One ; 13(6): e0199108, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29927999

RESUMO

The Proviral Integration site of Moloney murine leukemia virus (PIM) serine/threonine protein kinases are overexpressed in many hematologic and solid tumor malignancies and play central roles in intracellular signaling networks important in tumorigenesis, including the Janus kinase-signal transducer and activator of transcription (JAK/STAT) and phosphatidylinositol 3-kinase (PI3K)/AKT pathways. The three PIM kinase isozymes (PIM1, PIM2, and PIM3) share similar downstream substrates with other key oncogenic kinases and have differing but mutually compensatory functions across tumors. This supports the therapeutic potential of pan-PIM kinase inhibitors, especially in combination with other anticancer agents chosen based on their role in overlapping signaling networks. Reported here is a preclinical characterization of INCB053914, a novel, potent, and selective adenosine triphosphate-competitive pan-PIM kinase inhibitor. In vitro, INCB053914 inhibited proliferation and the phosphorylation of downstream substrates in cell lines from multiple hematologic malignancies. Effects were confirmed in primary bone marrow blasts from patients with acute myeloid leukemia treated ex vivo and in blood samples from patients receiving INCB053914 in an ongoing phase 1 dose-escalation study. In vivo, single-agent INCB053914 inhibited Bcl-2-associated death promoter protein phosphorylation and dose-dependently inhibited tumor growth in acute myeloid leukemia and multiple myeloma xenografts. Additive or synergistic inhibition of tumor growth was observed when INCB053914 was combined with selective PI3Kδ inhibition, selective JAK1 or JAK1/2 inhibition, or cytarabine. Based on these data, pan-PIM kinase inhibitors, including INCB053914, may have therapeutic utility in hematologic malignancies when combined with other inhibitors of oncogenic kinases or standard chemotherapeutics.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias Hematológicas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citarabina/farmacologia , Citarabina/uso terapêutico , Relação Dose-Resposta a Droga , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
J Thorac Oncol ; 12(12): 1851-1856, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28911955

RESUMO

INTRODUCTION: To address the lack of genomic data from Hispanic/Latino (H/L) patients with lung cancer, the Latino Lung Cancer Registry was established to collect patient data and biospecimens from H/L patients. METHODS: This retrospective observational study examined lung cancer tumor samples from 163 H/L patients, and tumor-derived DNA was subjected to targeted-exome sequencing (>1000 genes, including EGFR, KRAS, serine/threonine kinase 11 gene [STK11], and tumor protein p53 gene [TP53]) and ancestry analysis. Mutation frequencies in this H/L cohort were compared with those in a similar cohort of non-Hispanic white (NHW) patients and correlated with ancestry, sex, smoking status, and tumor histologic type. RESULTS: Of the adenocarcinomas in the H/L cohort (n = 120), 31% had EGFR mutations, versus 17% in the NHW control group (p < 0.001). KRAS (20% versus 38% [p = 0.002]) and STK11 (8% versus 16% [p = 0.065]) mutations occurred at lower frequency, and mutations in TP53 occurred at similar frequency (46% versus 40% [p = 0.355]) in H/L and NHW patients, respectively. Within the Hispanic cohort, ancestry influenced the rate of TP53 mutations (p = 0.009) and may have influenced the rate of EGFR, KRAS, and STK11 mutations. CONCLUSIONS: Driver mutations in H/L patients with lung adenocarcinoma differ in frequency from those in NHW patients associated with their indigenous American ancestry. The spectrum of driver mutations needs to be further assessed in the H/L population.


Assuntos
Neoplasias Pulmonares/genética , Mutação/genética , Feminino , Hispânico ou Latino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Estudos Retrospectivos
15.
Mol Cancer Ther ; 16(6): 1054-1067, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28336808

RESUMO

Synergistic action of kinase and BET bromodomain inhibitors in cell killing has been reported for a variety of cancers. Using the chemical scaffold of the JAK2 inhibitor TG101348, we developed and characterized single agents which potently and simultaneously inhibit BRD4 and a specific set of oncogenic tyrosine kinases including JAK2, FLT3, RET, and ROS1. Lead compounds showed on-target inhibition in several blood cancer cell lines and were highly efficacious at inhibiting the growth of hematopoietic progenitor cells from patients with myeloproliferative neoplasm. Screening across 931 cancer cell lines revealed differential growth inhibitory potential with highest activity against bone and blood cancers and greatly enhanced activity over the single BET inhibitor JQ1. Gene drug sensitivity analyses and drug combination studies indicate synergism of BRD4 and kinase inhibition as a plausible reason for the superior potency in cell killing. Combined, our findings indicate promising potential of these agents as novel chemical probes and cancer therapeutics. Mol Cancer Ther; 16(6); 1054-67. ©2017 AACR.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas/antagonistas & inibidores , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Sinergismo Farmacológico , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Camundongos , Modelos Moleculares , Conformação Molecular , Inibidores de Proteínas Quinases/química , Proteínas/química , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Res ; 76(12): 3531-40, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27197154

RESUMO

In a subset of patients with non-del(5q) myelodysplastic syndrome (MDS), lenalidomide promotes erythroid lineage competence and effective erythropoiesis. To determine the mechanism by which lenalidomide promotes erythropoiesis, we investigated its action on erythropoietin receptor (EpoR) cellular dynamics. Lenalidomide upregulated expression and stability of JAK2-associated EpoR in UT7 erythroid cells and primary CD71+ erythroid progenitors. The effects of lenalidomide on receptor turnover were Type I cytokine receptor specific, as evidenced by coregulation of the IL3-Rα receptor but not c-Kit. To elucidate this mechanism, we investigated the effects of lenalidomide on the E3 ubiquitin ligase RNF41. Lenalidomide promoted EpoR/RNF41 association and inhibited RNF41 auto-ubiquitination, accompanied by a reduction in EpoR ubiquitination. To confirm that RNF41 is the principal target responsible for EpoR stabilization, HEK293T cells were transfected with EpoR and/or RNF41 gene expression vectors. Steady-state EpoR expression was reduced in EpoR/RNF41 cells, whereas EpoR upregulation by lenalidomide was abrogated, indicating that cellular RNF41 is a critical determinant of drug-induced receptor modulation. Notably, shRNA suppression of CRBN gene expression failed to alter EpoR upregulation, indicating that drug-induced receptor modulation is independent of cereblon. Immunohistochemical staining showed that RNF41 expression decreased in primary erythroid cells of lenalidomide-responding patients, suggesting that cellular RNF41 expression merits investigation as a biomarker for lenalidomide response. Our findings indicate that lenalidomide has E3 ubiquitin ligase inhibitory effects that extend to RNF41 and that inhibition of RNF41 auto-ubiquitination promotes membrane accumulation of signaling competent JAK2/EpoR complexes that augment Epo responsiveness. Cancer Res; 76(12); 3531-40. ©2016 AACR.


Assuntos
Receptores da Eritropoetina/efeitos dos fármacos , Talidomida/análogos & derivados , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal , Células Cultivadas , Humanos , Janus Quinase 2/fisiologia , Lenalidomida , Peptídeo Hidrolases/fisiologia , Receptores da Eritropoetina/análise , Talidomida/farmacologia , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
17.
Oncotarget ; 6(37): 40141-57, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26472029

RESUMO

Classical myeloproliferative neoplasms (MPNs) are hematopoietic stem cell disorders that exhibit excess mature myeloid cells, bone marrow fibrosis, and risk of leukemic transformation. Aberrant JAK2 signaling plays an etiological role in MPN formation. Because neoplastic cells in patients are largely insensitive to current anti-JAK2 therapies, effective therapies remain needed. Members of the PIM family of serine/threonine kinases are induced by JAK/STAT signaling, regulate hematopoietic stem cell growth, protect hematopoietic cells from apoptosis, and exhibit hematopoietic cell transforming properties. We hypothesized that PIM kinases may offer a therapeutic target for MPNs. We treated JAK2-V617F-dependent MPN model cells as well as primary MPN patient cells with the PIM kinase inhibitors SGI-1776 and AZD1208 and the JAK2 inhibitor ruxolitinib. While MPN model cells were rather insensitive to PIM inhibitors, combination of PIM inhibitors with ruxolitinib led to a synergistic effect on MPN cell growth due to enhanced apoptosis. Importantly, PIM inhibitor mono-therapy inhibited, and AZD1208/ruxolitinib combination therapy synergistically suppressed, colony formation of primary MPN cells. Enhanced apoptosis by combination therapy was associated with activation of BAD, inhibition of downstream components of the mTOR pathway, including p70S6K and S6 protein, and activation of 4EBP1. Importantly, PIM inhibitors re-sensitized ruxolitinib-resistant MPN cells to ruxolitinib by inducing apoptosis. Finally, exogenous expression of PIM1 induced ruxolitinib resistance in MPN model cells. These data indicate that PIMs may play a role in MPNs and that combining PIM and JAK2 kinase inhibitors may offer a more efficacious therapeutic approach for MPNs over JAK2 inhibitor mono-therapy.


Assuntos
Apoptose/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Janus Quinase 2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Pirazóis/farmacologia , Tiazolidinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Humanos , Imidazóis/farmacologia , Immunoblotting , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Nitrilas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Piridazinas/farmacologia , Pirimidinas , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaio Tumoral de Célula-Tronco , Proteína de Morte Celular Associada a bcl/metabolismo
18.
Br J Haematol ; 160(2): 177-87, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23157224

RESUMO

Aberrant JAK2 signalling plays an important role in the aetiology of myeloproliferative neoplasms (MPNs). JAK2 inhibitors, however, do not readily eliminate neoplastic MPN cells and thus do not induce patient remission. Further understanding JAK2 signalling in MPNs may uncover novel avenues for therapeutic intervention. Recent work has suggested a potential role for cellular cholesterol in the activation of JAK2 by the erythropoietin receptor and in the development of an MPN-like disorder in mice. Our study demonstrates for the first time that the MPN-associated JAK2-V617F kinase localizes to lipid rafts and that JAK2-V617F-dependent signalling is inhibited by lipid raft disrupting agents, which target membrane cholesterol, a critical component of rafts. We also show for the first time that statins, 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors, widely used to treat hypercholesterolaemia, induce apoptosis and inhibit JAK2-V617F-dependent cell growth. These cells are more sensitive to statin treatment than non-JAK2-V617F-dependent cells. Importantly, statin treatment inhibited erythropoietin-independent erythroid colony formation of primary cells from MPN patients, but had no effect on erythroid colony formation from healthy individuals. Our study is the first to demonstrate that JAK2-V617F signalling is dependent on lipid rafts and that statins may be effective in a potential therapeutic approach for MPNs.


Assuntos
Janus Quinase 2/fisiologia , Microdomínios da Membrana/fisiologia , Mutação de Sentido Incorreto , Transtornos Mieloproliferativos/enzimologia , Mutação Puntual , Transdução de Sinais/efeitos dos fármacos , Sinvastatina/farmacologia , beta-Ciclodextrinas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/enzimologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/enzimologia , Colesterol/análise , Colesterol/fisiologia , Ensaio de Unidades Formadoras de Colônias , Avaliação Pré-Clínica de Medicamentos , Células Precursoras Eritroides/efeitos dos fármacos , Células Precursoras Eritroides/enzimologia , Humanos , Janus Quinase 2/genética , Células K562/efeitos dos fármacos , Células K562/enzimologia , Leucemia Eritroblástica Aguda/enzimologia , Leucemia Eritroblástica Aguda/patologia , Leucemia Megacarioblástica Aguda/enzimologia , Leucemia Megacarioblástica Aguda/patologia , Células Progenitoras de Megacariócitos/efeitos dos fármacos , Células Progenitoras de Megacariócitos/enzimologia , Lipídeos de Membrana/fisiologia , Microdomínios da Membrana/efeitos dos fármacos , Transtornos Mieloproliferativos/sangue , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Fator de Transcrição STAT5/metabolismo
19.
PLoS One ; 7(2): e31733, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22347506

RESUMO

Leukocyte tyrosine kinase (LTK) is a receptor tyrosine kinase reported to be overexpressed in human leukemia. Though much regarding the function of LTK remains unknown, it shares a high degree of similarity with anaplastic lymphoma kinase (ALK), which is found mutated in human cancer. In order to determine if LTK has transforming potential, we created two LTK mutants, F568L and R669Q, that correspond to two well-characterized activating mutations of ALK (F1174L and R1275Q). LTK-F568L, but not wildtype LTK or LTK-R669Q, transformed hematopoietic cells to cytokine independence. LTK-F568L exhibited a stronger ability to induce loss of contact inhibition and anchorage-independent growth of epithelial cells compared to LTK-R669Q, while wildtype LTK was non-transforming in the same cells. Likewise, LTK-F568L induced greater neurite outgrowth of PC12 cells than R669Q, while wildtype LTK could not. Correlating with transforming activity, LTK-F568L displayed significantly enhanced tyrosine phosphorylation compared to wildtype LTK and LTK-R668Q and induced activation of various signaling proteins including Shc, ERK and the JAK/STAT pathway. Expression of wildtype LTK or LTK-R669Q generally led to weaker activation of signaling proteins than expression of LTK-F568L, or no activation at all. Thus, mutating LTK at residue F568, and to a lesser extent at R669, activates the receptor tyrosine kinase, inducing cell signaling that results in transforming properties. These studies suggest that aberrant activation of LTK may contribute to neoplastic cell growth.


Assuntos
Transformação Celular Neoplásica/genética , Mutação/fisiologia , Receptores Proteína Tirosina Quinases/genética , Quinase do Linfoma Anaplásico , Inibição de Contato , Ativação Enzimática , Células Epiteliais , Humanos , Fosforilação , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais
20.
Am J Cancer Res ; 1(6): 752-62, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22016825

RESUMO

The prevalence of activating JAK2 mutations in myeloproliferative neoplasms (MPNs) suggests that aberrant gene expression due to deregulated signaling of the JAK2/STAT pathway plays an important role in the etiology of these diseases. While likely true, recent work has uncovered some fascinating new insights into both the function of mutationally-activated JAK2 as well as other mutated gene products in MPNs, and how these mutations may affect gene expression. In addition to being a cytoplasmic tyrosine kinase that relays signals from cytokine receptors, activated JAK2 can also function in the nucleus where it phosphorylates histones and deregulates binding of the transcriptional repressor HP1α. In addition, MPN-associated JAK2 mutants phosphorylate PRMT5 and inhibit its histone methyltransferase activity. Thus, in addition to the classical JAK/STAT pathway, JAK2 activating mutations in MPNs may deregulate gene expression by altering epigenetic mechanisms. Studies aimed at identifying the biochemical ramifications of other recurring MPN mutations also suggest deregulated epigenetic modifications may be important in MPN formation. Mutant TET2, as well as IDH1/2, impairs the hydroxylation of methylcytosine, thus affecting DNA methylation. Likewise, mutations in EZH2, a histone methyl transferase, ASXL1, which functions in chromatin modifier complexes, and the DNA methyltransferase DNMT3A, appear to inactivate the functions of these proteins toward regulating the epigenetic state of genes. Thus, it is likely that the control of gene expression by epigenetic mechanisms plays an important role in MPNs, since multiple recurring mutations in MPNs alter normal epigenetic regulatory mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA