Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 628(8009): 818-825, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658687

RESUMO

Timothy syndrome (TS) is a severe, multisystem disorder characterized by autism, epilepsy, long-QT syndrome and other neuropsychiatric conditions1. TS type 1 (TS1) is caused by a gain-of-function variant in the alternatively spliced and developmentally enriched CACNA1C exon 8A, as opposed to its counterpart exon 8. We previously uncovered several phenotypes in neurons derived from patients with TS1, including delayed channel inactivation, prolonged depolarization-induced calcium rise, impaired interneuron migration, activity-dependent dendrite retraction and an unanticipated persistent expression of exon 8A2-6. We reasoned that switching CACNA1C exon utilization from 8A to 8 would represent a potential therapeutic strategy. Here we developed antisense oligonucleotides (ASOs) to effectively decrease the inclusion of exon 8A in human cells both in vitro and, following transplantation, in vivo. We discovered that the ASO-mediated switch from exon 8A to 8 robustly rescued defects in patient-derived cortical organoids and migration in forebrain assembloids. Leveraging a transplantation platform previously developed7, we found that a single intrathecal ASO administration rescued calcium changes and in vivo dendrite retraction of patient neurons, suggesting that suppression of CACNA1C exon 8A expression is a potential treatment for TS1. Broadly, these experiments illustrate how a multilevel, in vivo and in vitro stem cell model-based approach can identify strategies to reverse disease-relevant neural pathophysiology.


Assuntos
Transtorno Autístico , Síndrome do QT Longo , Oligonucleotídeos Antissenso , Sindactilia , Animais , Feminino , Humanos , Masculino , Camundongos , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/genética , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Movimento Celular/efeitos dos fármacos , Dendritos/metabolismo , Éxons/genética , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Organoides/efeitos dos fármacos , Organoides/metabolismo , Prosencéfalo/metabolismo , Prosencéfalo/citologia , Sindactilia/tratamento farmacológico , Sindactilia/genética , Interneurônios/citologia , Interneurônios/efeitos dos fármacos
2.
Nature ; 610(7931): 319-326, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224417

RESUMO

Self-organizing neural organoids represent a promising in vitro platform with which to model human development and disease1-5. However, organoids lack the connectivity that exists in vivo, which limits maturation and makes integration with other circuits that control behaviour impossible. Here we show that human stem cell-derived cortical organoids transplanted into the somatosensory cortex of newborn athymic rats develop mature cell types that integrate into sensory and motivation-related circuits. MRI reveals post-transplantation organoid growth across multiple stem cell lines and animals, whereas single-nucleus profiling shows progression of corticogenesis and the emergence of activity-dependent transcriptional programs. Indeed, transplanted cortical neurons display more complex morphological, synaptic and intrinsic membrane properties than their in vitro counterparts, which enables the discovery of defects in neurons derived from individuals with Timothy syndrome. Anatomical and functional tracings show that transplanted organoids receive thalamocortical and corticocortical inputs, and in vivo recordings of neural activity demonstrate that these inputs can produce sensory responses in human cells. Finally, cortical organoids extend axons throughout the rat brain and their optogenetic activation can drive reward-seeking behaviour. Thus, transplanted human cortical neurons mature and engage host circuits that control behaviour. We anticipate that this approach will be useful for detecting circuit-level phenotypes in patient-derived cells that cannot otherwise be uncovered.


Assuntos
Vias Neurais , Organoides , Animais , Animais Recém-Nascidos , Transtorno Autístico , Humanos , Síndrome do QT Longo , Motivação , Neurônios/fisiologia , Optogenética , Organoides/citologia , Organoides/inervação , Organoides/transplante , Ratos , Recompensa , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Células-Tronco/citologia , Sindactilia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA