Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38388423

RESUMO

Electroencephalography (EEG) is an indispensable tool in epilepsy, sleep, and behavioral research. In rodents, EEG recordings are typically performed with metal electrodes that traverse the skull into the epidural space. In addition to requiring major surgery, intracranial EEG is difficult to perform for more than a few electrodes, is time-intensive, and confounds experiments studying traumatic brain injury. Here, we describe an open-source cost-effective refinement of this technique for chronic mouse EEG recording. Our alternative two-channel (EEG2) and sixteen-channel high-density EEG (HdEEG) arrays use electrodes made of the novel, flexible 2D nanomaterial titanium carbide (Ti3C2T x ) MXene. The MXene electrodes are placed on the surface of the intact skull and establish an electrical connection without conductive gel or paste. Fabrication and implantation times of MXene EEG electrodes are significantly shorter than the standard approach, and recorded resting baseline and epileptiform EEG waveforms are similar to those obtained with traditional epidural electrodes. Applying HdEEG to a mild traumatic brain injury (mTBI) model in mice of both sexes revealed that mTBI significantly increased spike-wave discharge (SWD) preictal network connectivity with frequencies of interest in the ß-spectral band (12-30 Hz). These findings indicate that the fabrication of MXene electrode arrays is a cost-effective, efficient technology for multichannel EEG recording in mice that obviates the need for skull-penetrating surgery. Moreover, increased preictal ß-frequency network connectivity may contribute to the development of early post-mTBI SWDs.


Assuntos
Concussão Encefálica , Encéfalo , Nitritos , Elementos de Transição , Masculino , Feminino , Camundongos , Animais , Eletroencefalografia/métodos , Eletrodos , Crânio
2.
Acta Neuropathol Commun ; 11(1): 171, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875948

RESUMO

Glaucoma, the second leading cause of irreversible blindness worldwide, is associated with age and sensitivity to intraocular pressure (IOP). We have shown that elevated IOP causes an early increase in levels of reactive oxygen species (ROS) in the microbead occlusion mouse model. We also detected an endogenous antioxidant response mediated by Nuclear factor erythroid 2-Related Factor 2 (NRF2), a transcription factor that binds to the antioxidant response element (ARE) and increases transcription of antioxidant genes. Our previous studies show that inhibiting this pathway results in earlier and greater glaucoma pathology. In this study, we sought to determine if this endogenous antioxidant response is driven by the retinal ganglion cells (RGCs) or glial cells. We used Nrf2fl/fl mice and cell-type specific adeno-associated viruses (AAVs) expressing Cre to alter Nrf2 levels in either the RGCs or glial cells. Then, we quantified the endogenous antioxidant response, visual function and optic nerve histology after IOP elevation. We found that knock-down of Nrf2 in either cell type blunts the antioxidant response and results in earlier pathology and vision loss. Further, we show that delivery of Nrf2 to the RGCs is sufficient to provide neuroprotection. In summary, both the RGCs and glial cells contribute to the antioxidant response, but treatment of the RGCs alone with increased Nrf2 is sufficient to delay onset of vision loss and axon degeneration in this induced model of glaucoma.


Assuntos
Glaucoma , Fator 2 Relacionado a NF-E2 , Células Ganglionares da Retina , Animais , Camundongos , Elementos de Resposta Antioxidante , Antioxidantes/farmacologia , Modelos Animais de Doenças , Glaucoma/genética , Pressão Intraocular , Neuroglia/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Células Ganglionares da Retina/patologia
3.
Mol Ther Methods Clin Dev ; 19: 139-148, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33024795

RESUMO

The power of CRISPRi to decrease targeted gene expression for clinical applications has been inhibited by delivery challenges. Existing constructs are too large to fit within the ∼4.7 kb packaging size limitation of adeno-associated virus (AAV), the only FDA approved viral vector for clinical use. Therefore, we optimized CRISPRi components to generate a single AAV vector that contains all functional elements and effectively knocks down expression of an endogenous gene in vivo. First, we increased nuclear targeting of Staphylococcus aureus deactivated Cas9 (SadCas9) 4-fold by using a helical linker and the c-Myc nuclear localization signal. Second, we identified an amino-terminal Krüppel associated box (KRAB) construct as the most effective in decreasing expression of target genes in vitro. Third, we optimized promoters for guide RNA and evaluated mini-promoters for expression of KRAB-SadCas9 in liver cells. Our final construct decreased protein convertase subtilisin/kexin type 9 (Pcsk9) mRNA and secreted protein 5-fold in vitro. The corresponding AAV2/8 vector was localized in nuclei of liver cells and decreased Pcsk9 mRNA and serum protein levels by 30% in vivo. This single AAV approach provides a potential clinically translatable method for decreasing targeted gene transcription by CRISPRi in vivo.

4.
Cell Death Dis ; 9(11): 1097, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367086

RESUMO

We investigated the role of oxidative stress and the inflammasome in trauma-induced axon degeneration and vision loss using a mouse model. The left eyes of male mice were exposed to over-pressure air waves. Wild-type C57Bl/6 mice were fed normal, high-vitamin-E (VitE), ketogenic or ketogenic-control diets. Mice lacking the ability to produce vitamin C (VitC) were maintained on a low-VitC diet. Visual evoked potentials (VEPs) and retinal superoxide levels were measured in vivo. Tissue was collected for biochemical and histological analysis. Injury increased retinal superoxide, decreased SOD2, and increased cleaved caspase-1, IL-1α, IL-1ß, and IL-18 levels. Low-VitC exacerbated the changes and the high-VitE diet mitigated them, suggesting that oxidative stress led to the increase in IL-1α and activation of the inflammasome. The injury caused loss of nearly 50% of optic nerve axons at 2 weeks and astrocyte hypertrophy in mice on normal diet, both of which were prevented by the high-VitE diet. The VEP amplitude was decreased after injury in both control-diet and low-VitC mice, but not in the high-VitE-diet mice. The ketogenic diet also prevented the increase in superoxide levels and IL-1α, but had no effect on IL-1ß. Despite this, the ketogenic diet preserved optic nerve axons, prevented astrocyte hypertrophy, and preserved the VEP amplitude. These data suggest that oxidative stress induces priming and activation of the inflammasome pathway after neurotrauma of the visual system. Further, blocking the activation of the inflammasome pathway may be an effective post-injury intervention.


Assuntos
Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Inflamação/prevenção & controle , Traumatismos do Nervo Óptico/dietoterapia , Traumatismos do Nervo Óptico/tratamento farmacológico , Retina/lesões , Vitamina E/uso terapêutico , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Axônios/metabolismo , Dieta Cetogênica , Modelos Animais de Doenças , Potenciais Evocados Visuais , Inflamassomos/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/análise
5.
Optom Vis Sci ; 94(1): 20-32, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27281679

RESUMO

PURPOSE: Erythropoietin (EPO) is a promising neuroprotective agent and is currently in Phase III clinical trials for the treatment of traumatic brain injury. The goal of this study was to determine if EPO is also protective in traumatic eye injury. METHODS: The left eyes of anesthetized DBA/2J or Balb/c mice were exposed to a single 26 psi overpressure air-wave while the rest of the body was shielded. DBA/2J mice were given intraperitoneal injections of EPO or buffer and analyses were performed at 3 or 7 days post-blast. Balb/c mice were given intramuscular injections of rAAV.EpoR76E or rAAV.eGFP either pre- or post-blast and analyses were performed at 1 month post-blast. RESULTS: EPO had a bimodal effect on cell death, glial reactivity, and oxidative stress. All measures were increased at 3 days post-blast and decreased at 7-days post-blast. Increased retinal ferritin and NADPH oxygenases were detected in retinas from EPO-treated mice. The gene therapy approach protected against axon degeneration, cell death, and oxidative stress when given after blast, but not before. CONCLUSIONS: Systemic, exogenous EPO and EPO-R76E protects the retina after trauma even when initiation of treatment is delayed by up to 3 weeks. Systemic treatment with EPO or EPO-R76E beginning before or soon after trauma may exacerbate protective effects of EPO within the retina as a result of increased iron levels from erythropoiesis and, thus, increased oxidative stress within the retina. This is likely overcome with time as a result of an increase in levels of antioxidant enzymes. Either intraocular delivery of EPO or treatment with non-erythropoietic forms of EPO may be more efficacious.


Assuntos
Traumatismos por Explosões/prevenção & controle , Eritropoetina/genética , Traumatismos Oculares/prevenção & controle , Terapia Genética , Retina/lesões , Doenças Retinianas/prevenção & controle , Animais , Traumatismos por Explosões/etiologia , Traumatismos por Explosões/metabolismo , Sobrevivência Celular , Dependovirus/genética , Modelos Animais de Doenças , Traumatismos Oculares/etiologia , Traumatismos Oculares/metabolismo , Ferritinas/metabolismo , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Marcação In Situ das Extremidades Cortadas , Injeções Intramusculares , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , NADPH Oxidases/metabolismo , Estresse Oxidativo/fisiologia , Reação em Cadeia da Polimerase , Retina/metabolismo , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Fatores de Tempo , Transtornos da Visão/prevenção & controle , Ferimentos não Penetrantes/etiologia , Ferimentos não Penetrantes/prevenção & controle
6.
PLoS One ; 11(6): e0157411, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27299810

RESUMO

PURPOSE: To test the efficacy of systemic gene delivery of a mutant form of erythropoietin (EPO-R76E) that has attenuated erythropoietic activity, in a mouse model of autosomal dominant retinitis pigmentosa. METHODS: Ten-day old mice carrying one copy of human rhodopsin with the P23H mutation and both copies of wild-type mouse rhodopsin (hP23H RHO+/-,mRHO+/+) were injected into the quadriceps with recombinant adeno-associated virus (rAAV) carrying either enhanced green fluorescent protein (eGFP) or EpoR76E. Visual function (electroretinogram) and retina structure (optical coherence tomography, histology, and immunohistochemistry) were assessed at 7 and 12 months of age. RESULTS: The outer nuclear layer thickness decreased over time at a slower rate in rAAV.EpoR76E treated as compared to the rAAV.eGFP injected mice. There was a statistically significant preservation of the electroretinogram at 7, but not 12 months of age. CONCLUSIONS: Systemic EPO-R76E slows death of the photoreceptors and vision loss in hP23H RHO+/-,mRHO+/+ mice. Treatment with EPO-R76E may widen the therapeutic window for retinal degeneration patients by increasing the number of viable cells. Future studies might investigate if co-treatment with EPO-R76E and gene replacement therapy is more effective than gene replacement therapy alone.


Assuntos
Eritropoetina/genética , Técnicas de Transferência de Genes , Terapia Genética , Células Fotorreceptoras Retinianas Cones/patologia , Retinose Pigmentar/patologia , Retinose Pigmentar/terapia , Animais , Morte Celular , Dependovirus/genética , Modelos Animais de Doenças , Eritropoetina/farmacocinética , Eritropoetina/uso terapêutico , Humanos , Camundongos , Opsinas/análise , Mutação Puntual , Retinose Pigmentar/genética , Retinose Pigmentar/fisiopatologia , Visão Ocular
7.
J Am Assoc Lab Anim Sci ; 55(3): 295-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27177562

RESUMO

Repeated injection of urethane (ethyl carbamate) is carcinogenic in susceptible strains of mice. Most recent cancer studies involving urethane-induced tumor formation use p53(+/-) mice, which lack one copy of the p53 tumor suppressor gene. In contrast, the same protocol elicits at most a single tumor in wildtype C57BL/6 mice. The effect of repeatedly injecting urethane as a component of a ketamine-xylazine anesthetic mixture in the highly prevalent mouse strain C57BL/6 is unknown. Male C57BL/6J mice (n = 30; age, 3 mo) were anesthetized once monthly for 4 mo by using 560 mg/kg urethane, 28 mg/kg ketamine, and 5.6 mg/kg xylazine. The physical health of the mice was evaluated according to 2 published scoring systems. The average body condition score (scale, 1 to 5; normal, 3) was 3.3, 3.3, and 3.4 after the 2nd, 3rd, and 4th injections, respectively. The visual assessment score was 0 (that is, normal) at all time points examined. Within 1 wk after the 4th injection, the mice were euthanized, necropsied, and evaluated histopathologically. No histopathologic findings were noteworthy. We conclude that repeated monthly injection with urethane as a component of an anesthetic cocktail does not cause clinically detectable abnormalities or induce neoplasia in C57BL/6J mice. These findings are important because urethane combined with low-dose ketamine, unlike other anesthetic regimens, allows for accurate recording of neuronal activity in both the brain and retina. Longitudinal neuronal recordings minimize the number of mice needed and improve the analysis of disease progression and potential therapeutic interventions.


Assuntos
Anestésicos/administração & dosagem , Anestésicos/efeitos adversos , Carcinógenos/administração & dosagem , Camundongos Endogâmicos C57BL , Uretana/administração & dosagem , Uretana/efeitos adversos , Animais , Ketamina/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL/classificação , Neoplasias/induzido quimicamente , Xilazina/administração & dosagem
8.
J Neuroinflammation ; 13: 39, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876380

RESUMO

BACKGROUND: Glaucoma is a complex neurodegeneration and a leading cause of blindness worldwide. Current therapeutic strategies, which are all directed towards lowering the intraocular pressure (IOP), do not stop progression of the disease. We have demonstrated that recombinant adeno-associated virus (rAAV) gene delivery of a form of erythropoietin with attenuated erythropoietic activity (EpoR76E) can preserve retinal ganglion cells, their axons, and vision without decreasing IOP. The goal of this study was to determine if modulation of neuroinflammation or oxidative stress played a role in the neuroprotective activity of EPO.R76E. METHODS: Five-month-old DBA/2J mice were treated with either rAAV.EpoR76E or a control vector and collected at 8 months of age. Neuroprotection was assessed by quantification of axon transport and visual evoked potentials. Microglia number and morphology and cytokine and chemokine levels were quantified. Message levels of oxidative stress-related proteins were assessed. RESULTS: Axon transport and visual evoked potentials were preserved in rAAV.EpoR76E-treated mice. The number of microglia was decreased in retinas from 8-month-old rAAV.EpoR76E-treated mice, but proliferation was unaffected. The blood-retina barrier was also unaffected by treatment. Levels of some pro-inflammatory cytokines were decreased in retinas from rAAV.EpoR76E-treated mice including IL-1, IL-12, IL-13, IL-17, CCL4, and CCL5. TNFα messenger RNA (mRNA) was increased in retinas from 8-month-old mice compared to 3-month-old controls regardless of treatment. Expression of several antioxidant proteins was increased in retinas of rAAV.EpoR76E-treated 8-month-old mice. CONCLUSIONS: Treatment with rAAV.EpoR76E preserves vision in the DBA/2J model of glaucoma at least in part by decreasing infiltration of peripheral immune cells, modulating microglial reactivity, and decreasing oxidative stress.


Assuntos
Citocinas/metabolismo , Eritropoetina/uso terapêutico , Terapia Genética/métodos , Glaucoma/complicações , Glaucoma/terapia , Estresse Oxidativo/fisiologia , Animais , Proteínas de Ligação ao Cálcio , Toxina da Cólera/metabolismo , Citocinas/genética , Dependovirus/genética , Modelos Animais de Doenças , Eritropoetina/genética , Potenciais Evocados Visuais/fisiologia , Angiofluoresceinografia , Regulação da Expressão Gênica/fisiologia , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos DBA , Proteínas dos Microfilamentos , Microglia/patologia , Estimulação Luminosa , Retina/patologia , Transdução Genética
9.
Mol Ther ; 24(2): 230-239, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26502777

RESUMO

Glaucoma, a common cause of blindness, is currently treated by intraocular pressure (IOP)-lowering interventions. However, this approach is insufficient to completely prevent vision loss. Here, we evaluate an IOP-independent gene therapy strategy using a modified erythropoietin, EPO-R76E, which has reduced erythropoietic function. We used two models of glaucoma, the murine microbead occlusion model and the DBA/2J mouse. Systemic recombinant adeno-associated virus-mediated gene delivery of EpoR76E (rAAV.EpoR76E) was performed concurrent with elevation of IOP. Axon structure and active anterograde transport were preserved in both models. Vision, as determined by the flash visual evoked potential, was preserved in the DBA/2J. These results show that systemic EpoR76E gene therapy protects retinal ganglion cells from glaucomatous degeneration in two different models. This suggests that EPO targets a component of the neurodegenerative pathway that is common to both models. The efficacy of rAAV.EpoR76E delivered at onset of IOP elevation supports clinical relevance of this treatment.


Assuntos
Axônios/patologia , Eritropoetina/genética , Glaucoma/terapia , Mutação , Nervo Óptico/patologia , Animais , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos/administração & dosagem , Glaucoma/genética , Glaucoma/patologia , Humanos , Pressão Intraocular , Camundongos
10.
Curr Gene Ther ; 13(4): 275-81, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23773177

RESUMO

Erythropoietin (EPO) can protect the retina from acute damage, but long-term systemic treatment induces polycythemia. Intraocular gene delivery of EPO is not protective despite producing high levels of EPO likely due to its bellshaped dose curve. The goal of this study was to identify a therapeutic dose of continuously produced EPO in the eye. We packaged a mutated form of EPO (EPOR76E) that has equivalent neuroprotective activity as wild-type EPO and attenuated erythropoietic activity into a recombinant adeno-associated viral vector under the control of the tetracycline inducible promoter. This vector was injected into the subretinal space of homozygous postnatal 5-7 day retinal degeneration slow mice, that express the tetracycline transactivators from a retinal pigment epithelium specific promoter. At weaning, mice received a single intraperitoneal injection of doxycycline and were then maintained on water with or without doxycycline until postnatal day 60. Intraocular EPO levels and outer nuclear layer thickness were quantified and correlated. Control eyes contained 6.1 ± 0.1 (SEM) mU/ml EPO. The eyes of mice that received an intraperitoneal injection of doxycycline contained 11.8 ± 2.0 (SEM) mU/ml EPO-R76E. Treatment with doxycycline water induced production of 35.9 ± 2.4 (SEM) mU/ml EPO-R76E in the eye. The outer nuclear layer was approximately 8 µm thicker in eyes of mice that received doxycycline water as compared to the control groups. Our data indicates that drug delivery systems should be optimized to deliver at least 36 mU/ml EPO into the eye since this dose was effective for the treatment of a progressive retinal degeneration.


Assuntos
Sistemas de Liberação de Medicamentos , Eritropoetina/administração & dosagem , Técnicas de Transferência de Genes , Degeneração Retiniana , Animais , Eritropoetina/genética , Terapia Genética , Vetores Genéticos/uso terapêutico , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , Retina/efeitos dos fármacos , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/terapia
11.
Exp Eye Res ; 96(1): 36-41, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22306016

RESUMO

The goal of the present study was to determine the minimum concentration of systemic erythropoietin-R76E required for neuroprotection in the retina. Erythropoietin (EPO) exhibits neuroprotective effects in both in vitro and in vivo models of neuronal cell death although its classical function is the regulation of red blood cell production. It can cross the blood brain barrier and therefore can be delivered systemically to affect the retina. However, long-term treatment with exogenous erythropoietin causes polycythemia. To decrease this potentially lethal effect, we generated and tested a modified form that contains a single arginine to glutamate mutation at the 76th position (EPO-R76E). In previous studies, this mutant protected retinal neurons in mouse models of retinal degeneration and glaucoma with similar efficacy as wild-type EPO. However, EPO-R76E has attenuated erythropoietic activity, therefore, neuroprotection can be achieved without causing a significant rise in hematocrit. BALB/cByJ mice received a single intramuscular injection of recombinant adeno-associated virus carrying enhanced green fluorescent protein, Epo, or Epo-R76E. To result in continuous production of four different doses of EPO-R76E, two doses of two different serotypes (2/5 and 2/8) were used. Mice were subjected to optic nerve crush and analysis was performed thirty days later. EPO-R76E showed dose-dependent protection of the retinal ganglion cell bodies, but was unable to prevent axonal degeneration. Furthermore, EPO-R76E induced a dose-dependent rise in the hematocrit that was still attenuated as compared to wild-type EPO.


Assuntos
Modelos Animais de Doenças , Eritropoetina/administração & dosagem , Glaucoma/prevenção & controle , Traumatismos do Nervo Óptico/prevenção & controle , Proteínas Recombinantes de Fusão/administração & dosagem , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Contagem de Células , Citomegalovirus/genética , Dependovirus/genética , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Eritropoetina/genética , Vetores Genéticos , Glaucoma/patologia , Proteínas de Fluorescência Verde/administração & dosagem , Hematócrito , Injeções Intramusculares , Camundongos , Camundongos Endogâmicos BALB C , Compressão Nervosa , Traumatismos do Nervo Óptico/patologia , Proteínas Recombinantes de Fusão/genética , Células Ganglionares da Retina/patologia
12.
Hum Gene Ther ; 22(10): 1191-200, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21542676

RESUMO

A slow progressive death of neurons is the hallmark of neurodegenerative diseases, such as glaucoma. A therapeutic candidate, erythropoietin (EPO), has shown promise in many models of these diseases; however, it also causes polycythemia, a potentially lethal side effect. We have developed a novel mutant form of EPO that is neuroprotective but no longer erythropoietic by altering a single amino acid (arginine to glutamate at position 76; R76E). We hypothesized that a single intramuscular injection of recombinant adeno-associated virus carrying EpoR76E (rAAV2/5.CMV.EpoR76E) would protect retinal ganglion cells in a mouse model of glaucoma without inducing polycythemia. This systemic treatment not only protected the retinal ganglion cell somata located within the retina; it also preserved axonal projections within the optic nerve, while maintaining the hematocrit within normal limits. The rescued retinal ganglion cells retained their visual function demonstrated by flash visual evoked potentials. To our knowledge, this is the first demonstration of a therapy that protects neurons from death and prevents loss of visual function from the slow neurodegenerative effects of glaucoma. Because of its broad range of cellular targets, EpoR76E is likely to be successful in treating other neurodegenerative diseases as well.


Assuntos
Eritropoetina/genética , Eritropoetina/farmacologia , Terapia Genética/métodos , Glaucoma/terapia , Células Ganglionares da Retina/efeitos dos fármacos , Visão Ocular/efeitos dos fármacos , Análise de Variância , Animais , Axônios/efeitos dos fármacos , Dependovirus , Ensaio de Imunoadsorção Enzimática , Eritropoetina/administração & dosagem , Potenciais Evocados Visuais/fisiologia , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Vetores Genéticos/farmacologia , Glaucoma/genética , Hematócrito , Imuno-Histoquímica , Injeções Intramusculares , Macaca mulatta/genética , Camundongos , Camundongos Endogâmicos DBA , Mutação de Sentido Incorreto/genética , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/patologia
13.
Neurochem Res ; 36(4): 613-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20924671

RESUMO

The retinal degeneration slow (rds/rds) mouse was used to test photoreceptor protection by systemic gene delivery of non-erythropoietic forms of erythropoietin (EPO). Two Epo mutants were generated and packaged into recombinant adeno-associated virus (rAAV) serotype 2/5, controls included rAAV2/5.Epo and rAAV2/5.enhanced green fluorescent protein (eGFP). Mice were injected in the quadriceps at postnatal day seven and analyses were performed at postnatal day 90. Hematocrit, serum EPO levels, and outer nuclear layer (ONL) thickness were quantified. Hematocrit and serum EPO levels in rAAV2/5.eGFP, rAAV2/5.Epo, and rAAV2/5.EpoR103E treated mice were: 46%, 8 mU/ml; 63%, 117 mU/ml; and 52%, 332 mU/ml, respectively. The ONL from rds/rds mice treated with the Epo vectors were approximately twice as thick as the negative controls. This demonstrates that the photoreceptors can be protected without performing an intraocular injection and without increasing the hematocrit to unsafe levels. Intramuscular delivery of rAAV.EpoR103E is an attractive treatment for retinal degenerative diseases.


Assuntos
Eritropoetina/genética , Técnicas de Transferência de Genes , Células Fotorreceptoras de Vertebrados/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Primers do DNA , Dependovirus/genética , Ensaio de Imunoadsorção Enzimática , Eritropoetina/química , Vetores Genéticos , Humanos , Camundongos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Tomografia de Coerência Óptica
14.
Exp Eye Res ; 89(5): 735-40, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19591826

RESUMO

The primary objectives of this study were to determine if erythropoietin (EPO) is neuroprotective to the photoreceptors in the retinal degeneration slow (rds) mouse in the absence of an increase in hematocrit and to determine if deglycosylated EPO (DEPO) is less neuroprotective. We performed subretinal injections of 10U EPO, DEPO or hyperglycosylated EPO (HEPO) in postnatal day 7 rds mice. Whole eye EPO levels were quantified by ELISA at specified time points post-injection. TUNEL analysis, hematocrit, and immunohistochemistry were performed at postnatal day 20. Half of the amount of EPO measured immediately after injection was detected less than 1 h later. Twenty four hours later, EPO levels were 1000 times lower than the amount originally detected. Uninjected rds mice contained 36 +/- 2 TUNEL-positive cells/mm retina and PBS injected mice contained 17 +/- 3 TUNEL-positive cells/mm retina. EPO, DEPO, and HEPO treated rds retinas contained 5 +/- 2, 9 +/- 2, and 3 +/- 1 TUNEL-positive cells/mm retina, respectively. The hematocrit was 43% in control and 41% in treated rds mice Previous studies have shown neuroprotection of the retina by treatment with as little as 24-39 mU EPO/mg total protein in the eye. In this study, we detected 40 mU/mg EPO in the eye 11 h after injection of 10 U EPO. Treatment with all forms of EPO tested was neuroprotective to the photoreceptors without a concomitant increase in hematocrit.


Assuntos
Eritropoetina/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Degeneração Retiniana/tratamento farmacológico , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Darbepoetina alfa , Dependovirus/genética , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Eritropoetina/análogos & derivados , Eritropoetina/farmacocinética , Glicosilação , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Hematócrito , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Injeções , Proteínas de Filamentos Intermediários/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Proteínas do Tecido Nervoso/genética , Fármacos Neuroprotetores/farmacocinética , Periferinas , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Processamento de Proteína Pós-Traducional , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Fatores de Tempo , Transdução Genética
15.
J Clin Invest ; 118(5): 1955-64, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18414684

RESUMO

Vectors derived from adeno-associated virus (AAV) are promising for human gene therapy, including treatment for retinal blindness. One major limitation of AAVs as vectors is that AAV cargo capacity has been considered to be restricted to 4.7 kb. Here we demonstrate that vectors with an AAV5 capsid (i.e., rAAV2/5) incorporated up to 8.9 kb of genome more efficiently than 6 other serotypes tested, independent of the efficiency of the rAAV2/5 production process. Efficient packaging of the large murine Abca4 and human MYO7A and CEP290 genes, which are mutated in common blinding diseases, was obtained, suggesting that this packaging efficiency is independent of the specific sequence packaged. Expression of proteins of the appropriate size and function was observed following transduction with rAAV2/5 carrying large genes. Intraocular administration of rAAV2/5 encoding ABCA4 resulted in protein localization to rod outer segments and significant and stable morphological and functional improvement of the retina in Abca4(-/-) mice. This use of rAAV2/5 may be a promising therapeutic strategy for recessive Stargardt disease, the most common form of inherited macular degeneration. The possibility of packaging large genes in AAV greatly expands the therapeutic potential of this vector system.


Assuntos
Dependovirus , Técnicas de Transferência de Genes , Vetores Genéticos , Retina , Sorotipagem , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Dependovirus/genética , Dependovirus/metabolismo , Dineínas/genética , Dineínas/metabolismo , Eletrorretinografia , Terapia Genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Dados de Sequência Molecular , Miosina VIIa , Miosinas/genética , Miosinas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Retina/citologia , Retina/metabolismo
16.
Mol Ther ; 16(3): 458-65, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18209734

RESUMO

We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer sequence to prevent reverse packaging from the AAV inverted-terminal repeats, and co-injection with a surfactant. The latter allows consistent and predictable delivery of a given dose of vector. We observed improved electroretinograms (ERGs) and visual acuity in Rpe65 mutant mice. This has not been reported previously using AAV2 vectors. Subretinal delivery of 8.25 x 10(10) vector genomes in affected dogs was well tolerated both locally and systemically, and treated animals showed improved visual behavior and pupillary responses, and reduced nystagmus within 2 weeks of injection. ERG responses confirmed the reversal of visual deficit. Immunohistochemistry confirmed transduction of retinal pigment epithelium cells and there was minimal toxicity to the retina as judged by histopathologic analysis. The data demonstrate that AAV2.RPE65 delivers the RPE65 transgene efficiently and quickly to the appropriate target cells in vivo in animal models. This vector holds great promise for treatment of LCA due to RPE65 mutations.


Assuntos
Cegueira/terapia , Dependovirus/genética , Animais , Cegueira/genética , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Cães , Eletrorretinografia , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Vetores Genéticos/genética , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/terapia , cis-trans-Isomerases
18.
Ophthalmic Genet ; 28(3): 127-33, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17896310

RESUMO

This review will cover the state of the field in retinal degeneration and gene therapy with a focus on the great strides that have been made in retina gene therapy. Topics ranging from the development of animal models to clinical trials (for the treatment of Leber congenital amaurosis, age-related macular degeneration, and retinoblastoma) will be discussed. In addition, the results of gene therapy studies targeting the photoreceptors will be presented. Finally, strategies and progress in overcoming the challenges of photoreceptor-directed gene therapy will be presented.


Assuntos
Terapia Genética , Degeneração Retiniana/terapia , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Terapia Genética/tendências , Humanos , Degeneração Macular/terapia , Atrofia Óptica Hereditária de Leber/terapia , Células Fotorreceptoras de Vertebrados , Degeneração Retiniana/fisiopatologia , Neoplasias da Retina/terapia , Retinoblastoma/terapia
19.
Mol Vis ; 11: 1236-45, 2005 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-16402024

RESUMO

PURPOSE: The concentration of enhanced green fluorescent protein (EGFP) in individual photoreceptor cells of live mouse retina was quantified and correlated with physiological measurements of cell function. METHODS: EGFP protein levels in the retinas of mice injected subretinally by either one of two serotypes of adeno-associated virus (AAV; AAV2/5.CMV.EGFP; AAV2/2.CMV.EGFP) were quantified with a photon-counting confocal laser scanning microscope and compared with those of transgenic mice whose retinas expressed EGFP under the beta-actin (pbetaAct) or human L/M-cone opsin (pLMCOps) promoter. Single-cell suction pipette recordings of single rods and whole-field electroretinograms (ERGs) were performed to assess retinal cell function. RESULTS: The highest levels of EGFP (680 microM) were in the retinal pigment epithelium (RPE) cells of the AAV-transduced eyes. Living photoreceptors of pbetaAct.EGFP mice contained 270 microM EGFP, while their bipolars had 440 microM. The cones of pLMCOps.EGFP mice expressed 60 microM protein. The amplitudes of the major components of ERGs were within the normal range for all transgenic animals examined, and single cell recordings from living pbetaAct.EGFP rods were indistinguishable from those of controls. CONCLUSIONS: EGFP levels in individual cells of live mouse retinas can be quantified, so that the efficacy of gene transfer methods can be quantified. Concentrations of several hundred microM are not deleterious to normal function of photoreceptors and bipolar cells. This approach can also be used to quantify levels of biologically active EGFP fusion proteins.


Assuntos
Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/farmacocinética , Proteínas de Fluorescência Verde/intoxicação , Retina/efeitos dos fármacos , Retina/metabolismo , Animais , Dependovirus/genética , Eletrofisiologia , Eletrorretinografia , Embrião de Mamíferos/metabolismo , Vetores Genéticos , Proteínas de Fluorescência Verde/administração & dosagem , Injeções , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Concentração Osmolar , Estimulação Luminosa , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/citologia , Retina/fisiologia , Células Bipolares da Retina/metabolismo , Distribuição Tecidual
20.
Mol Vis ; 10: 837-44, 2004 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-15547489

RESUMO

PURPOSE: Pigment epithelium derived factor (PEDF) is a secreted protein with demonstrated anti-angiogenic properties, and with potential application for the treatment of neovascular disease. Delivery of pigment epithelium derived factor to the retina via virus mediated gene transfer has been shown to inhibit neovascularization in a number of experimental models. While pigment epithelium derived factor is endogenously expressed in the retina, its role in guiding normal vessel development and growth is not yet known. This study aimed to determine whether over-expression of pigment epithelium derived factor alters the normal pattern of retinal vessel development. METHODS: Neonatal (age postnatal day 2 (P2)) CD1 mice were injected subretinally unilaterally with AAV2/1.CMV.PEDF while contralateral eyes were injected subretinally with AAV2/1.CMV.EGFP as control. Cohorts of animals were sacrificed at P7 to P21 and the retinal vasculature was co-labeled through fluorescein-dextran perfusion and immunohistochemistry. Vascular size, localization, and structure were analyzed using light and confocal microscopy. Additional cohorts were use to obtain quantitative levels of pigment epithelium derived factor protein through ELISA. RESULTS: The extent of vessel growth from the optic disk to periphery over time (i.e., the radius of retinal vasculature), and the area of expansion of the neural retina were unaffected by over-expression of pigment epithelium derived factor to levels at least 3.5 fold higher than endogenous levels. The thicknesses of the various retinal layers were similar in AAV2/1.CMV.PEDF treated and control injected eyes. Three dimensional analysis of confocal images shows a slight delay in the rate of growth of vasculature into the deeper layers of the retina in pigment epithelium derived factor treated eyes compared to EGFP treated control eyes. However, the normal differentiation of vessels into arterioles, and venules, and the formation of a capillary network continued to occur, achieving normal and complete maturation of vascular structure by P21. CONCLUSIONS: Over-expression of pigment epithelium derived factor in the developing retina exerted no marked or permanent effects on retinal vessel growth and differentiation. The findings are relevant to the safety of the potential therapeutic use of pigment epithelium derived factor in human retinal disease.


Assuntos
Proteínas do Olho/fisiologia , Expressão Gênica , Fatores de Crescimento Neural/fisiologia , Vasos Retinianos/crescimento & desenvolvimento , Serpinas/fisiologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Dependovirus/genética , Endotélio Vascular/metabolismo , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Disco Óptico/irrigação sanguínea , RNA Mensageiro/metabolismo , Vasos Retinianos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transgenes , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA