Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 302: 122298, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37713762

RESUMO

The success of mRNA-based vaccines during the Covid-19 pandemic has highlighted the value of this new platform for vaccine development against infectious disease. However, the CD8+ T cell response remains modest with mRNA vaccines, and these do not induce mucosal immunity, which would be needed to prevent viral spread in the healthy population. To address this drawback, we developed a dendritic cell targeting mucosal vaccination vector, the homopentameric STxB. Here, we describe the highly efficient chemical synthesis of the protein, and its in vitro folding. This straightforward preparation led to a synthetic delivery tool whose biophysical and intracellular trafficking characteristics were largely indistinguishable from recombinant STxB. The chemical approach allowed for the generation of new variants with bioorthogonal handles. Selected variants were chemically coupled to several types of antigens derived from the mucosal viruses SARS-CoV-2 and type 16 human papillomavirus. Upon intranasal administration in mice, mucosal immunity, including resident memory CD8+ T cells and IgA antibodies was induced against these antigens. Our study thereby identifies a novel synthetic antigen delivery tool for mucosal vaccination with an unmatched potential to respond to an urgent medical need.


Assuntos
Linfócitos T CD8-Positivos , Pandemias , Camundongos , Humanos , Animais , Vacinação , Vacinas Sintéticas , Antígenos , Anticorpos Antivirais
2.
PLoS Pathog ; 19(4): e1011339, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37093892

RESUMO

Infection with viruses of animal origin pose a significant threat to human populations. Simian foamy viruses (SFVs) are frequently transmitted to humans, in which they establish a life-long infection, with the persistence of replication-competent virus. However, zoonotic SFVs do not induce severe disease nor are they transmitted between humans. Thus, SFVs represent a model of zoonotic retroviruses that lead to a chronic infection successfully controlled by the human immune system. We previously showed that infected humans develop potent neutralizing antibodies (nAbs). Within the viral envelope (Env), the surface protein (SU) carries a variable region that defines two genotypes, overlaps with the receptor binding domain (RBD), and is the exclusive target of nAbs. However, its antigenic determinants are not understood. Here, we characterized nAbs present in plasma samples from SFV-infected individuals living in Central Africa. Neutralization assays were carried out in the presence of recombinant SU that compete with SU at the surface of viral vector particles. We defined the regions targeted by the nAbs using mutant SU proteins modified at the glycosylation sites, RBD functional subregions, and genotype-specific sequences that present properties of B-cell epitopes. We observed that nAbs target conformational epitopes. We identified three major epitopic regions: the loops at the apex of the RBD, which likely mediate interactions between Env protomers to form Env trimers, a loop located in the vicinity of the heparan binding site, and a region proximal to the highly conserved glycosylation site N8. We provide information on how nAbs specific for each of the two viral genotypes target different epitopes. Two common immune escape mechanisms, sequence variation and glycan shielding, were not observed. We propose a model according to which the neutralization mechanisms rely on the nAbs to block the Env conformational change and/or interfere with binding to susceptible cells. As the SFV RBD is structurally different from known retroviral RBDs, our data provide fundamental knowledge on the structural basis for the inhibition of viruses by nAbs. Trial registration: The study was registered at www.clinicaltrials.gov: https://clinicaltrials.gov/ct2/show/NCT03225794/.


Assuntos
Hominidae , Vírus Espumoso dos Símios , Animais , Humanos , Vírus Espumoso dos Símios/genética , Retroviridae , Anticorpos Neutralizantes , Epitopos de Linfócito B/genética , Anticorpos Anti-HIV
3.
Nat Commun ; 14(1): 1262, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878926

RESUMO

The surface envelope glycoprotein (Env) of all retroviruses mediates virus binding to cells and fusion of the viral and cellular membranes. A structure-function relationship for the HIV Env that belongs to the Orthoretrovirus subfamily has been well established. Structural information is however largely missing for the Env of Foamy viruses (FVs), the second retroviral subfamily. In this work we present the X-ray structure of the receptor binding domain (RBD) of a simian FV Env at 2.57 Å resolution, revealing two subdomains and an unprecedented fold. We have generated a model for the organization of the RBDs within the trimeric Env, which indicates that the upper subdomains form a cage-like structure at the apex of the Env, and identified residues K342, R343, R359 and R369 in the lower subdomain as key players for the interaction of the RBD and viral particles with heparan sulfate.


Assuntos
Vírus Espumoso dos Símios , Spumavirus , Retroviridae , Membrana Celular , Glicoproteínas de Membrana
4.
Nat Commun ; 13(1): 3718, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764616

RESUMO

The flavivirus envelope glycoproteins prM and E drive the assembly of icosahedral, spiky immature particles that bud across the membrane of the endoplasmic reticulum. Maturation into infectious virions in the trans-Golgi network involves an acid-pH-driven rearrangement into smooth particles made of (prM/E)2 dimers exposing a furin site for prM cleavage into "pr" and "M". Here we show that the prM "pr" moiety derives from an HSP40 cellular chaperonin. Furthermore, the X-ray structure of the tick-borne encephalitis virus (pr/E)2 dimer at acidic pH reveals the E 150-loop as a hinged-lid that opens at low pH to expose a positively-charged pr-binding pocket at the E dimer interface, inducing (prM/E)2 dimer formation to generate smooth particles in the Golgi. Furin cleavage is followed by lid-closure upon deprotonation in the neutral-pH extracellular environment, expelling pr while the 150-loop takes the relay in fusion loop protection, thus revealing the elusive flavivirus mechanism of fusion activation.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Furina , Fusão de Membrana , Proteínas do Envelope Viral/química , Vírion
5.
EBioMedicine ; 77: 103934, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35290827

RESUMO

BACKGROUND: SARS-CoV-2 lineages are continuously evolving. As of December 2021, the AY.4.2 Delta sub-lineage represented 20 % of sequenced strains in the UK and had been detected in dozens of countries. It has since then been supplanted by Omicron. The AY.4.2 spike displays three additional mutations (T95I, Y145H and A222V) in the N-terminal domain when compared to the original Delta variant (B.1.617.2) and remains poorly characterized. METHODS: We compared the Delta and the AY.4.2 spikes, by assessing their binding to antibodies and ACE2 and their fusogenicity. We studied the sensitivity of an authentic AY.4.2 viral isolate to neutralizing antibodies. FINDINGS: The AY.4.2 spike exhibited similar binding to all the antibodies and sera tested, and similar fusogenicity and binding to ACE2 than the ancestral Delta spike. The AY.4.2 virus was slightly less sensitive than Delta to neutralization by a panel of monoclonal antibodies; noticeably, the anti-RBD Imdevimab showed incomplete neutralization. Sensitivity of AY.4.2 to sera from vaccinated individuals was reduced by 1.3 to 3-fold, when compared to Delta. INTERPRETATION: Our results suggest that mutations in the NTD remotely impair the efficacy of anti-RBD antibodies. The spread of AY.4.2 was not due to major changes in spike fusogenicity or ACE2 binding, but more likely to a partially reduced neutralization sensitivity. FUNDING: The work was funded by Institut Pasteur, Fondation pour la Recherche Médicale, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, ANRS, the Vaccine Research Institute, Labex IBEID, ANR/FRM Flash Covid PROTEO-SARS-CoV-2 and IDISCOVR.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais Humanizados , Anticorpos Antivirais , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral
6.
Science ; 375(6576): 104-109, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34793197

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is the most widespread tick-borne zoonotic virus, with a 30% case fatality rate in humans. Structural information is lacking in regard to the CCHFV membrane fusion glycoprotein Gc­the main target of the host neutralizing antibody response­as well as antibody­mediated neutralization mechanisms. We describe the structure of prefusion Gc bound to the antigen-binding fragments (Fabs) of two neutralizing antibodies that display synergy when combined, as well as the structure of trimeric, postfusion Gc. The structures show the two Fabs acting in concert to block membrane fusion, with one targeting the fusion loops and the other blocking Gc trimer formation. The structures also revealed the neutralization mechanism of previously reported antibodies against CCHFV, providing the molecular underpinnings essential for developing CCHFV­specific medical countermeasures for epidemic preparedness.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Modelos Moleculares , Testes de Neutralização , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus
7.
Cell ; 184(25): 6052-6066.e18, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34852239

RESUMO

The human monoclonal antibody C10 exhibits extraordinary cross-reactivity, potently neutralizing Zika virus (ZIKV) and the four serotypes of dengue virus (DENV1-DENV4). Here we describe a comparative structure-function analysis of C10 bound to the envelope (E) protein dimers of the five viruses it neutralizes. We demonstrate that the C10 Fab has high affinity for ZIKV and DENV1 but not for DENV2, DENV3, and DENV4. We further show that the C10 interaction with the latter viruses requires an E protein conformational landscape that limits binding to only one of the three independent epitopes per virion. This limited affinity is nevertheless counterbalanced by the particle's icosahedral organization, which allows two different dimers to be reached by both Fab arms of a C10 immunoglobulin. The epitopes' geometric distribution thus confers C10 its exceptional neutralization breadth. Our results highlight the importance not only of paratope/epitope complementarity but also the topological distribution for epitope-focused vaccine design.


Assuntos
Anticorpos Neutralizantes , Vírus da Dengue , Dengue , Proteínas do Envelope Viral , Infecção por Zika virus , Zika virus , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Reações Cruzadas/imunologia , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/imunologia , Vírus da Dengue/fisiologia , Drosophila melanogaster , Células HEK293 , Humanos , Ligação Proteica , Conformação Proteica , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Zika virus/imunologia , Zika virus/fisiologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
8.
Viruses ; 13(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34960636

RESUMO

A key step during the entry of enveloped viruses into cells is the merger of viral and cell lipid bilayers. This process is driven by a dedicated membrane fusion protein (MFP) present at the virion surface, which undergoes a membrane-fusogenic conformational change triggered by interactions with the target cell. Viral MFPs have been extensively studied structurally, and are divided into three classes depending on their three-dimensional fold. Because MFPs of the same class are found in otherwise unrelated viruses, their intra-class structural homology indicates horizontal gene exchange. We focus this review on the class II fusion machinery, which is composed of two glycoproteins that associate as heterodimers. They fold together in the ER of infected cells such that the MFP adopts a conformation primed to react to specific clues only upon contact with a target cell, avoiding premature fusion in the producer cell. We show that, despite having diverged in their 3D fold during evolution much more than the actual MFP, the class II accompanying proteins (AP) also derive from a distant common ancestor, displaying an invariant core formed by a ß-ribbon and a C-terminal immunoglobulin-like domain playing different functional roles-heterotypic interactions with the MFP, and homotypic AP/AP contacts to form spikes, respectively. Our analysis shows that class II APs are easily identifiable with modern structural prediction algorithms, providing useful information in devising immunogens for vaccine design.


Assuntos
Alphavirus/fisiologia , Bunyaviridae/fisiologia , Genoma Viral/genética , Glicoproteínas/química , Proteínas Virais de Fusão/química , Internalização do Vírus , Alphavirus/genética , Animais , Evolução Biológica , Bunyaviridae/genética , Glicoproteínas/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Modelos Estruturais , Multimerização Proteica , Proteínas Virais de Fusão/metabolismo , Vírion
9.
PLoS Biol ; 19(9): e3001392, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34499637

RESUMO

Human herpesvirus 8 (HHV-8) is an oncogenic virus that enters cells by fusion of the viral and endosomal cellular membranes in a process mediated by viral surface glycoproteins. One of the cellular receptors hijacked by HHV-8 to gain access to cells is the EphA2 tyrosine kinase receptor, and the mechanistic basis of EphA2-mediated viral entry remains unclear. Using X-ray structure analysis, targeted mutagenesis, and binding studies, we here show that the HHV-8 envelope glycoprotein complex H and L (gH/gL) binds with subnanomolar affinity to EphA2 via molecular mimicry of the receptor's cellular ligands, ephrins (Eph family receptor interacting proteins), revealing a pivotal role for the conserved gH residue E52 and the amino-terminal peptide of gL. Using FSI-FRET and cell contraction assays, we further demonstrate that the gH/gL complex also functionally mimics ephrin ligand by inducing EphA2 receptor association via its dimerization interface, thus triggering receptor signaling for cytoskeleton remodeling. These results now provide novel insight into the entry mechanism of HHV-8, opening avenues for the search of therapeutic agents that could interfere with HHV-8-related diseases.


Assuntos
Herpesvirus Humano 8/fisiologia , Mimetismo Molecular , Receptores Proteína Tirosina Quinases/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Drosophila , Efrinas , Células HEK293 , Humanos , Ligantes , Glicoproteínas de Membrana/metabolismo , Transdução de Sinais , Proteínas do Envelope Viral
10.
Clin Transl Immunology ; 10(7): e1313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277007

RESUMO

OBJECTIVE: Human hantavirus infections can cause haemorrhagic fever with renal syndrome (HFRS). The pathogenic mechanisms are not fully understood, nor if they affect the humoral immune system. The objective of this study was to investigate humoral immune responses to hantavirus infection and to correlate them to the typical features of HFRS: thrombocytopenia and transient kidney dysfunction. METHODS: We performed a comprehensive characterisation of longitudinal antiviral B-cell responses of 26 hantavirus patients and combined this with paired clinical data. In addition, we measured extracellular adenosine triphosphate (ATP) and its breakdown products in circulation and performed in vitro stimulations to address its effect on B cells. RESULTS: We found that thrombocytopenia was correlated to an elevated frequency of plasmablasts in circulation. In contrast, kidney dysfunction was indicative of an accumulation of CD27-IgD- B cells and CD27-/low plasmablasts. Finally, we provide evidence that high levels of extracellular ATP and matrix metalloproteinase 8 can contribute to shedding of CD27 during human hantavirus infection. CONCLUSION: Our findings demonstrate that thrombocytopenia and kidney dysfunction associate with distinctly different effects on the humoral immune system. Moreover, hantavirus-infected individuals have significantly elevated levels of extracellular ATP in circulation.

11.
mBio ; 12(3)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947756

RESUMO

Herpesvirus entry and spread requires fusion of viral and host cell membranes, which is mediated by the conserved surface glycoprotein B (gB). Upon activation, gB undergoes a major conformational change and transits from a metastable prefusion to a stable postfusion conformation. Although gB is a structural homolog of low-pH-triggered class III fusogens, its fusion activity depends strictly on the presence of the conserved regulatory gH/gL complex and nonconserved receptor binding proteins, which ensure that fusion occurs at the right time and space. How gB maintains its prefusion conformation and how gB fusogenicity is controlled remain poorly understood. Here, we report the isolation and characterization of a naturally selected pseudorabies virus (PrV) gB able to mediate efficient gH/gL-independent virus-cell and cell-cell fusion. We found that the control exerted on gB by the accompanying viral proteins is mediated via its cytosolic domain (CTD). Whereas gB variants lacking the CTD are inactive, a single mutation of a conserved asparagine residue in an alpha-helical motif of the ectodomain recently shown to be at the core of the gB prefusion trimer compensated for CTD absence and uncoupled gB from regulatory viral proteins, resulting in a hyperfusion phenotype. This phenotype was transferred to gB homologs from different alphaherpesvirus genera. Overall, our data propose a model in which the central helix acts as a molecular switch for the gB pre-to-postfusion transition by conveying the structural status of the endo- to the ectodomain, thereby governing their cross talk for fusion activation, providing a new paradigm for herpesvirus fusion regulation.IMPORTANCE The class III fusion protein glycoprotein B (gB) drives membrane fusion during entry and spread of herpesviruses. To mediate fusion, gB requires activation by the conserved gH/gL complex by a poorly defined mechanism. A detailed molecular-level understanding of herpesvirus membrane fusion is of fundamental virological interest and has considerable potential for the development of new therapeutics blocking herpesvirus cell invasion and spread. Using in vitro evolution and targeted mutagenesis of three different animal alphaherpesviruses, we identified a single conserved amino acid in a regulatory helix in the center of the gB ectodomain that enables efficient gH/gL-independent entry and plays a crucial role in the pre-to-postfusion transition of gB. Our results propose that the central helix is a key regulatory element involved in the intrastructural signal transduction between the endo- and ectodomain for fusion activation. This study expands our understanding of herpesvirus membrane fusion and uncovers potential targets for therapeutic interventions.


Assuntos
Aminoácidos/genética , Evolução Molecular Direcionada , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Aminoácidos/química , Animais , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Células Vero , Proteínas do Envelope Viral/química
12.
Cell ; 183(2): 442-456.e16, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937107

RESUMO

Hantaviruses are rodent-borne viruses causing serious zoonotic outbreaks worldwide for which no treatment is available. Hantavirus particles are pleomorphic and display a characteristic square surface lattice. The envelope glycoproteins Gn and Gc form heterodimers that further assemble into tetrameric spikes, the lattice building blocks. The glycoproteins, which are the sole targets of neutralizing antibodies, drive virus entry via receptor-mediated endocytosis and endosomal membrane fusion. Here we describe the high-resolution X-ray structures of the heterodimer of Gc and the Gn head and of the homotetrameric Gn base. Docking them into an 11.4-Å-resolution cryoelectron tomography map of the hantavirus surface accounted for the complete extramembrane portion of the viral glycoprotein shell and allowed a detailed description of the surface organization of these pleomorphic virions. Our results, which further revealed a built-in mechanism controlling Gc membrane insertion for fusion, pave the way for immunogen design to protect against pathogenic hantaviruses.


Assuntos
Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/ultraestrutura , Orthohantavírus/química , Glicoproteínas/química , Glicoproteínas/ultraestrutura , Orthohantavírus/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/fisiologia , Conformação Proteica , Vírus de RNA , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/ultraestrutura , Vírion , Internalização do Vírus
13.
C R Biol ; 343(1): 33-39, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32720486

RESUMO

SARS-CoV-2 epidemics raises a considerable issue of public health at the planetary scale. There is a pressing urgency to find treatments based upon currently available scientific knowledge. Therefore, we tentatively propose a hypothesis which hopefully might ultimately help save lives. Based on the current scientific literature and on new epidemiological data which reveal that current smoking status appears to be a protective factor against the infection by SARS-CoV-2 [1], we hypothesize that the nicotinic acetylcholine receptor (nAChR) plays a key role in the pathophysiology of Covid-19 infection and might represent a target for the prevention and control of Covid-19 infection.


L'épidémie de SARS-Cov-2 pose un problème considérable de santé publique à l'échelle planétaire. Il y a urgence extrême de découvrir des traitements qui se fondent sur les connaissances scientifiques disponibles. Nous proposons donc une hypothèse plausible mais provisoire qui puisse le moment venu contribuer à sauver des vies. Elle se fonde sur la littérature scientifique disponible et sur des données épidémiologiques nouvelles qui révèlent que le statut de fumeur parait être un facteur de protection contre l'infection par SARS-Cov-2 [1]. Nous proposons l'hypothèse que le récepteur nicotinique de l'acétylcholine (nAChR) joue un rôle critique dans la pathophysiologie de l'infection Covid-19 et puisse représenter une cible pour la prévention et le contrôle de l'infection.


Assuntos
Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/terapia , Nicotina/uso terapêutico , Agonistas Nicotínicos/uso terapêutico , Pneumonia Viral/fisiopatologia , Pneumonia Viral/terapia , Receptores Nicotínicos , COVID-19 , Infecções por Coronavirus/prevenção & controle , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Fumar , Adesivo Transdérmico
14.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32269117

RESUMO

West Nile virus (WNV), a member of the Flavivirus genus and currently one of the most common arboviruses worldwide, is associated with severe neurological disease in humans. Its high potential to reemerge and rapidly disseminate makes it a bona fide global public health problem. The surface membrane glycoprotein (M) has been associated with Flavivirus-induced pathogenesis. Here, we identified a key amino acid residue at position 36 of the M protein whose mutation impacts WNV secretion and promotes viral attenuation. We also identified a compensatory site at position M-43 whose mutation stabilizes M-36 substitution both in vitro and in vivo Moreover, we found that introduction of the two mutations together confers a full attenuation phenotype and protection against wild-type WNV lethal challenge, eliciting potent neutralizing-antibody production in mice. Our study thus establishes the M protein as a new viral target for rational design of attenuated WNV strains.IMPORTANCE West Nile virus (WNV) is a worldwide (re)emerging mosquito-transmitted Flavivirus causing fatal neurological diseases in humans. However, no human vaccine has been yet approved. One of the most effective live-attenuated vaccines was empirically obtained by serial passaging of wild-type yellow fever Flavivirus However, such an approach is not acceptable nowadays, and the development of a rationally designed vaccine is necessary. Generating molecular infectious clones and mutating specific residues known to be involved in Flavivirus virulence constitute a powerful tool to promote viral attenuation. WNV membrane glycoprotein is thought to carry such essential determinants. Here, we identified two residues of this protein whose substitutions are key to the full and stable attenuation of WNV in vivo, most likely through inhibition of secretion and possible alteration of morphology. Applied to other flaviviruses, this approach should help in designing new vaccines against these viruses, which are an increasing threat to global human health.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Glicoproteínas de Membrana/genética , Mutação , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Expressão Gênica , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Neurônios/imunologia , Neurônios/virologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Análise de Sobrevida , Células Vero , Proteínas Virais , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/mortalidade , Febre do Nilo Ocidental/patologia , Vírus do Nilo Ocidental/crescimento & desenvolvimento , Vírus do Nilo Ocidental/imunologia
15.
Proc Natl Acad Sci U S A ; 117(12): 6675-6685, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152119

RESUMO

A comprehensive understanding of the development and evolution of human B cell responses induced by pathogen exposure will facilitate the design of next-generation vaccines. Here, we utilized a high-throughput single B cell cloning technology to longitudinally track the human B cell response to the yellow fever virus 17D (YFV-17D) vaccine. The early memory B cell (MBC) response was mediated by both classical immunoglobulin M (IgM) (IgM+CD27+) and switched immunoglobulin (swIg+) MBC populations; however, classical IgM MBCs waned rapidly, whereas swIg+ and atypical IgM+ and IgD+ MBCs were stable over time. Affinity maturation continued for 6 to 9 mo following vaccination, providing evidence for the persistence of germinal center activity long after the period of active viral replication in peripheral blood. Finally, a substantial fraction of the neutralizing antibody response was mediated by public clones that recognize a fusion loop-proximal antigenic site within domain II of the viral envelope glycoprotein. Overall, our findings provide a framework for understanding the dynamics and complexity of human B cell responses elicited by infection and vaccination.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Linfócitos B/imunologia , Memória Imunológica/imunologia , Vacina contra Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Vírus da Febre Amarela/imunologia , Adulto , Humanos , Vacinação , Vacinas Atenuadas/imunologia , Proteínas do Envelope Viral/imunologia , Replicação Viral , Febre Amarela/imunologia , Febre Amarela/virologia , Vacina contra Febre Amarela/administração & dosagem
16.
J Mol Biol ; 431(24): 4922-4940, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31711961

RESUMO

The retroviral envelope-derived proteins syncytin-1 and syncytin-2 (syn1 and syn2) drive placentation in humans by forming a syncytiotophoblast, a structure allowing for an exchange interface between maternal and fetal blood during pregnancy. Despite their essential role, little is known about the molecular mechanism underlying the syncytins' function. We report here the X-ray structures of the syn1 and syn2 transmembrane subunit ectodomains, featuring a 6-helix bundle (6HB) typical of the post-fusion state of gamma-retrovirus and filovirus fusion proteins. Contrary to the filoviruses, for which the fusion glycoprotein was crystallized both in the post-fusion and in the spring-loaded pre-fusion form, the highly unstable nature of the syncytins' prefusion form has precluded structural studies. We undertook a proline-scanning approach searching for regions in the syn1 6HB central helix that tolerate the introduction of helix-breaker residues and still fold correctly in the pre-fusion form. We found that there is indeed such a region, located two α-helical turns downstream a stutter in the central coiled-coil helix - precisely where the breaks of the spring-loaded helix of the filoviruses map. These mutants were fusion-inactive as they cannot form the 6HB, similar to the "SOSIP" mutant of HIV Env that allowed the high-resolution structural characterization of its labile pre-fusion form. These results now open a new window of opportunity to engineer more stable variants of the elusive pre-fusion trimer of the syncytins and other gamma-retroviruses envelope proteins for structural characterization.


Assuntos
Produtos do Gene env/química , Modelos Moleculares , Proteínas da Gravidez/química , Conformação Proteica , Sequência de Aminoácidos , Cristalografia por Raios X , Gammaretrovirus , Produtos do Gene env/metabolismo , Humanos , Proteínas da Gravidez/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas do Envelope Viral/química
17.
Nat Immunol ; 20(10): 1291-1298, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31477918

RESUMO

Infections with dengue virus (DENV) and Zika virus (ZIKV) can induce cross-reactive antibody responses. Two immunodominant epitopes-one to precursor membrane protein and one to the fusion loop epitope on envelope (E) protein-are recognized by cross-reactive antibodies1-3 that are not only poorly neutralizing, but can also promote increased viral replication and disease severity via Fcγ receptor-mediated infection of myeloid cells-a process termed antibody-dependent enhancement (ADE)1,4,5. ADE is a significant concern for both ZIKV and DENV vaccines as the induction of poorly neutralizing cross-reactive antibodies may prime an individual for ADE on natural infection. In this report, we describe the design and production of covalently stabilized ZIKV E dimers, which lack precursor membrane protein and do not expose the immunodominant fusion loop epitope. Immunization of mice with ZIKV E dimers induces dimer-specific antibodies, which protect against ZIKV challenge during pregnancy. Importantly, the ZIKV E-dimer-induced response does not cross-react with DENV or induce ADE of DENV infection.


Assuntos
Vírus da Dengue/fisiologia , Dengue/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/imunologia , Zika virus/fisiologia , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Reações Cruzadas , Dimerização , Epitopos/genética , Feminino , Engenharia Genética , Células HEK293 , Humanos , Epitopos Imunodominantes/genética , Camundongos , Camundongos Endogâmicos BALB C , Receptores de IgG/metabolismo , Vacinação , Proteínas do Envelope Viral/genética , Vacinas Virais/genética , Replicação Viral
18.
Adv Virus Res ; 104: 225-281, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31439150

RESUMO

Membrane fusion is a fundamental biological process that allows different cellular compartments delimited by a lipid membrane to release or exchange their respective contents. Similarly, enveloped viruses such as alphaherpesviruses exploit membrane fusion to enter and infect their host cells. For infectious entry the prototypic human Herpes simplex viruses 1 and 2 (HSV-1 and -2, collectively termed HSVs) and the porcine Pseudorabies virus (PrV) utilize four different essential envelope glycoproteins (g): the bona fide fusion protein gB and the regulatory heterodimeric gH/gL complex that constitute the "core fusion machinery" conserved in all members of the Herpesviridae; and the subfamily specific receptor binding protein gD. These four components mediate attachment and fusion of the virion envelope with the host cell plasma membrane through a tightly regulated sequential activation process. Although PrV and the HSVs are closely related and employ the same set of glycoproteins for entry, they show remarkable differences in the requirements for fusion. Whereas the HSVs strictly require all four components for membrane fusion, PrV can mediate cell-cell fusion without gD. Moreover, in contrast to the HSVs, PrV provides a unique opportunity for reversion analyses of gL-negative mutants by serial cell culture passaging, due to a limited cell-cell spread capacity of gL-negative PrV not observed in the HSVs. This allows a more direct analysis of the function of gH/gL during membrane fusion. Unraveling the molecular mechanism of herpesvirus fusion has been a goal of fundamental research for years, and yet important mechanistic details remain to be uncovered. Nevertheless, the elucidation of the crystal structures of all key players involved in PrV and HSV membrane fusion, coupled with a wealth of functional data, has shed some light on this complex puzzle. In this review, we summarize and discuss the contemporary knowledge on the molecular mechanism of entry and membrane fusion utilized by the alphaherpesvirus PrV, and highlight similarities but also remarkable differences in the requirements for fusion between PrV and the HSVs.


Assuntos
Herpesvirus Humano 1/fisiologia , Herpesvirus Suídeo 1/fisiologia , Herpesvirus Humano 2/fisiologia , Internalização do Vírus , Membrana Celular/metabolismo , Glicoproteínas/metabolismo , Proteínas do Envelope Viral/metabolismo , Ligação Viral
19.
Elife ; 82019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31180319

RESUMO

The hantavirus envelope glycoproteins Gn and Gc mediate virion assembly and cell entry, with Gc driving fusion of viral and endosomal membranes. Although the X-ray structures and overall arrangement of Gn and Gc on the hantavirus spikes are known, their detailed interactions are not. Here we show that the lateral contacts between spikes are mediated by the same 2-fold contacts observed in Gc crystals at neutral pH, allowing the engineering of disulfide bonds to cross-link spikes. Disrupting the observed dimer interface affects particle assembly and overall spike stability. We further show that the spikes display a temperature-dependent dynamic behavior at neutral pH, alternating between 'open' and 'closed' forms. We show that the open form exposes the Gc fusion loops but is off-pathway for productive Gc-induced membrane fusion and cell entry. These data also provide crucial new insights for the design of optimized Gn/Gc immunogens to elicit protective immune responses.


Assuntos
Glicoproteínas/metabolismo , Orthohantavírus/metabolismo , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus , Internalização do Vírus , Sequência de Aminoácidos , Cristalografia por Raios X , Glicoproteínas/química , Glicoproteínas/genética , Orthohantavírus/genética , Orthohantavírus/fisiologia , Concentração de Íons de Hidrogênio , Fusão de Membrana , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Homologia de Sequência de Aminoácidos , Temperatura , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
20.
Nat Commun ; 10(1): 879, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787296

RESUMO

Orthobunyaviruses (OBVs) form a distinct genus of arthropod-borne bunyaviruses that can cause severe disease upon zoonotic transmission to humans. Antigenic drift or genome segment re-assortment have in the past resulted in new pathogenic OBVs, making them potential candidates for causing emerging zoonoses in the future. Low-resolution electron cryo-tomography studies have shown that OBV particles feature prominent trimeric spikes, but their molecular organization remained unknown. Here we report X-ray crystallography studies of four different OBVs showing that the spikes are formed by an N-terminal extension of the fusion glycoprotein Gc. Using Schmallenberg virus, a recently emerged OBV, we also show that the projecting spike is the major target of the neutralizing antibody response, and provide X-ray structures in complex with two protecting antibodies. We further show that immunization of mice with the spike domains elicits virtually sterilizing immunity, providing fundamental knowledge essential in the preparation for potential newly emerging OBV zoonoses.


Assuntos
Anticorpos Neutralizantes/imunologia , Orthobunyavirus/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Estruturas Virais/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Chlorocebus aethiops , Cricetinae , Cristalografia por Raios X , Feminino , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Terciária de Proteína , Ruminantes/virologia , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA