RESUMO
BACKGROUND: Biodegradable materials that dissolve after aneurysm healing are promising techniques in the field of neurointerventional surgery. We investigated the effects of various bioabsorable materials in combination with degradable magnesium alloy stents and evaluated aneurysm healing in a rat aneurysm model. METHODS: Saccular aneurysms were created by end-to-side anastomosis in the abdominal aorta of Wistar rats. Untreated arterial grafts were immediately transplanted (vital aneurysms) whereas aneurysms with loss of mural cells were chemically decellularized before implantation. All aneurysms were treated with biodegradable magnesium stents. The animals were assigned to vital aneurysms treated with stent alone or decellularized aneurysms treated with stent alone, detachable coil, or long-term or short-term biodegradable thread. Aneurysm healing, rated microscopically and macroscopically at follow-up days 7 and 21, was defined by both neointima formation and absence of aneurysm volume increase over time. RESULTS: Of 56 animals included, significant increases in aneurysm volume 7 days after surgery were observed in aneurysms with vital and decellularized walls treated with a stent only (P=0.043 each group). Twenty-one days after surgery an increase in aneurysm volume was observed in decellularized aneurysms treated with long- and short-term biodegradable threads (P=0.027 and P=0.028, respectively). Histological changes associated with an increase in aneurysm volume were seen for aneurysm wall inflammation, periadventitial fibrosis, and luminal thrombus. CONCLUSIONS: An increase in aneurysm volume was associated with an absence of intrasaccular embolization material (early phase) and the breakdown of intrasaccular biodegradable material over time (late phase). Thrombus remnant and aneurysm wall inflammation promote aneurysm volume increase.
RESUMO
BACKGROUND: Unlike clipping that forms an immediate barrier of blood flow into intracranial aneurysms, endovascular treatments rely on thrombus organization and neointima formation. Therefore, a continuous endothelial cell layer is crucial to prevent blood flow in the former aneurysm. This study investigates the origin of endothelial cells in the neointima of endovascular treated aneurysms, specifically whether cells from the parent artery play a role in neointima formation. METHODS: In male rats, decellularized and vital side wall aneurysms were treated by coil (n=16) or stent embolization (n=15). The cell tracer CM-Dil dye was injected into the clamped aorta before aneurysm suture to mark initial endothelial cells in the parent artery and enable tracking of their proliferation during follow-up. Aneurysms were analyzed for growth, thrombus formation, and recurrence. Histological evaluation followed with cell counts for specific regions-of-interest. RESULTS: During follow-up, none of the 31 aneurysms ruptured. Macroscopic residual perfusion was observed in 12/16 rats after coiling and in 1/15 after stenting. Amounts of CM-Dil +cells in coiled versus stented decellularized aneurysms significantly decreased in the thrombus on day 7 (p=0.01) and neointima on day 21 (p=0.04). For vital aneurysms, the number of CM-Dil +cells in the neointima on day 21 showed no significant difference. CONCLUSIONS: Healing patterns were worse in coil-treated than stent-treated aneurysms. Cell migration forming a neointima seemed mainly dependent on the adjacent vessel in decellularized aneurysms, but appeared buoyed by recruitment from aneurysm wall cells in vital aneurysms. Therefore, a cell-rich parent artery might be crucial.
Assuntos
Embolização Terapêutica , Aneurisma Intracraniano , Trombose , Masculino , Ratos , Animais , Neointima , Células Endoteliais , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/terapia , Aneurisma Intracraniano/patologia , Stents , Artérias/patologia , Trombose/terapia , Resultado do TratamentoRESUMO
BACKGROUND: Aneurysm wall degeneration is linked to growth and rupture. To address the effect of aspirin (ASA) on aneurysm formation under various wall conditions, this issue was analyzed in a novel rabbit bifurcation model. METHODS: Bifurcation aneurysms created in 45 New Zealand White rabbits were randomized to vital (n=15), decellularized (n=13), or elastase-degraded (n=17) wall groups; each group was assigned to a study arm with or without ASA. At follow-up 28 days later, aneurysms were evaluated for patency, growth, and wall inflammation at macroscopic and histological levels. RESULTS: 36 rabbits survived to follow-up at the end of the trial. None of the aneurysms had ruptured. Patency was visualized in all aneurysms by intraoperative fluorescence angiography and confirmed in 33 (92%) of 36 aneurysms by MRI/MRA. Aneurysm size was significantly increased in the vital (without ASA) and elastase-degraded (with and without ASA) groups. Aneurysm thrombosis was considered complete in three (50%) of six decellularized aneurysms without ASA by MRI/MRA. Locoregional inflammation of the aneurysm complex was significantly reduced in histological analysis among all groups treated with ASA. CONCLUSION: ASA intake prevented inflammation of both the periadventitial tissue and aneurysm wall, irrespective of initial wall condition. Although ASA prevented significant growth in aneurysms with vital walls, this preventive effect did not have an important role in elastase-degraded pouches. In possible translation to the clinical situation, ASA might exert a potential preventive effect during early phases of aneurysm formation in patients with healthy vessels but not in those with highly degenerative aneurysm walls.
Assuntos
Aneurisma , Aneurisma Intracraniano , Animais , Coelhos , Aspirina/farmacologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/tratamento farmacológico , Aneurisma Intracraniano/prevenção & controle , Elastase PancreáticaRESUMO
BACKGROUND AND PURPOSE: Despite significant technical advances, recanalization rates after endovascular therapy of ruptured intracranial aneurysms (IAs) remain a clinical challenge. A histopathological hallmark of ruptured human IA walls is mural cell loss. Mural smooth muscle cells (SMCs) are known to promote intraluminal healing in thrombosed experimental aneurysms. In this rat model we assess the natural history and healing process after coil embolization in SMC-rich and decellularized aneurysms. METHODS: Saccular aneurysms were created by end-to-side anastomosis of an arterial graft from the descending thoracic aorta of a syngeneic donor rat to the infrarenal abdominal aorta of recipient male Wistar rats. Untreated arterial grafts were immediately transplanted, whereas aneurysms with loss of mural cells were chemically decellularized before implantation. Aneurysms underwent coil implantation during aneurysm anastomosis. Animals were randomly assigned either to the non-decellularized or decellularized group and underwent macroscopic and histological analyses on days 3, 7, 21, or 90 post-coil implantation. RESULTS: A total of 55 rats underwent macroscopic and histologic analysis. After coil embolization, aneurysms with SMC-rich walls showed a linear course of thrombosis and neointima formation whereas decellularized aneurysms showed marked inflammatory wall degeneration with increased recanalization rates 21 days (p=0.002) and 90 days (p=0.037) later. The SMCs showed the ability to actively migrate into the intra-aneurysmal thrombus and participate in thrombus organization. CONCLUSIONS: Coil embolization of aneurysms with highly degenerated walls is prone to further wall degeneration, increased inflammation, and recanalization compared with aneurysms with vital SMC-rich walls.
Assuntos
Aneurisma Roto/patologia , Modelos Animais de Doenças , Embolização Terapêutica/tendências , Endotélio Vascular/patologia , Aneurisma Intracraniano/patologia , Aneurisma Roto/terapia , Animais , Prótese Vascular , Embolização Terapêutica/métodos , Humanos , Aneurisma Intracraniano/terapia , Masculino , Ratos , Ratos WistarRESUMO
Brain aneurysm treatment focuses on achieving complete occlusion, as well as preserving blood flow in the parent artery. Fluorescein sodium and indocyanine green are used to enable the observation of blood flow and vessel perfusion status, respectively. The aim of this study is to apply FVA to verify real-time blood flow, vessel perfusion status and occlusion of aneurysms after induction of sidewall aneurysms in rabbits and rats, as well as to validate the procedure in these species. Twenty sidewall aneurysms were created in 10 rabbits by suturing a decellularized arterial vessel pouch on the carotid artery of a donor rabbit. In addition, 48 microsurgical sidewall aneurysms were created in 48 rats. During follow-up at one month after creation, the parent artery/aneurysm complex was dissected and FVA was performed using an intravenous fluorescein (10%, 1 mL) injection via an ear vein catheterization in rabbits and a femoral vein catherization in rats. Aneurysms were then harvested, and patency was evaluated macroscopically. Macroscopically, 14 out of 16 aneurysms in rabbits indicated no residual parent artery perfusion with totally occluded luminae, however 11 (79%) were detected by FVA. Four aneurysms were excluded due to technical problems. In rats, residual aneurysm perfusion was macroscopically observed in 25 out of 48 cases. Of the 23 without macroscopic evidence of perfusion, FVA confirmed the incidence of 22 aneurysms (96%). There were no adverse events associated with FVA. Fluorescein is easily applicable and no special equipment is needed. It is a safe and extremely effective method for evaluating parent artery integrity and aneurysm patency/residual perfusion in an experimental setting with rabbits and rats. FVA using fluorescein as a contrast agent appears to be effective in controlling patency of aneurysms and the underlying vessel and can even be adapted to bypass surgery.
Assuntos
Artérias/diagnóstico por imagem , Artérias/fisiopatologia , Angiofluoresceinografia , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/fisiopatologia , Imagem de Perfusão , Animais , Artérias/cirurgia , Cateterismo , Modelos Animais de Doenças , Feminino , Masculino , Coelhos , Ratos , Procedimentos Cirúrgicos VascularesRESUMO
BACKGROUND: Advances in stent-assisted coiling have incrementally expanded endovascular treatment options for complex cerebral aneurysms. After successful coil consolidation and aneurysm occlusion, endovascular scaffolds are no longer needed. Thus, bioresorbable stents that disappear after aneurysm healing could avoid future risks of in-stent thrombosis and the need for lifelong antiplatelet therapy. OBJECTIVE: To assess the applicability and compatibility of a bioresorbable magnesium- alloy stent (brMAS) for assisted coiling. METHODS: Saccular sidewall aneurysms were created in 84 male Wistar rats and treated with brMAS alone, brMAS + aspirin, or brMAS + coils + aspirin. Control groups included no treatment (natural course), solely aspirin treatment, or conventional cobalt-chromium stent + coils + aspirin treatment. After 1 and 4 weeks, aneurysm specimens were harvested and macroscopically, histologically, and molecularly examined for healing, parent artery perfusion status, and inflammatory reactions. Stent degradation was monitored for up to 6 months with micro-computed and optical coherence tomography. RESULTS: Aneurysms treated with brMAS showed advanced healing, neointima formation, and subsequent stent degradation. Additional administration of aspirin sustained aneurysm healing while reducing stent-induced intraluminal and periadventitial inflammatory responses. No negative interaction was detected between platinum coils and brMAS. Progressive brMAS degradation was confirmed. CONCLUSIONS: brMAS induced appropriate healing in this sidewall aneurysm model. The concept of using bioresorbable materials to promote complete aneurysm healing and subsequent stent degradation seems promising. These results should encourage further device refinements and clinical evaluation of this treatment strategy for cerebrovascular aneurysms.
Assuntos
Implantes Absorvíveis , Aneurisma Intracraniano/terapia , Stents , Implantes Absorvíveis/normas , Animais , Aspirina/administração & dosagem , Embolização Terapêutica/métodos , Estudos de Viabilidade , Aneurisma Intracraniano/diagnóstico por imagem , Masculino , Ratos , Ratos Wistar , Stents/normas , Resultado do TratamentoRESUMO
The steady progess in the armamentarium of techniques available for endovascular treatment of intracranial aneurysms requires affordable and reproducable experimental animal models to test novel embolization materials such as stents and flow diverters. The aim of the present project was to design a safe, fast, and standardized surgical technique for stent assisted embolization of saccular aneurysms in a rat animal model. Saccular aneurysms were created from an arterial graft from the descending aorta.The aneurysms were microsurgically transplanted through end-to-side anastomosis to the infrarenal abdominal aorta of a syngenic male Wistar rat weighing >500 g. Following aneurysm anastomosis, aneurysm embolization was performed using balloon expandable magnesium stents (2.5 mm x 6 mm). The stent system was retrograde introduced from the lower abdominal aorta using a modified Seldinger technique. Following a pilot series of 6 animals, a total of 67 rats were operated according to established standard operating procedures. Mean surgery time, mean anastomosis time, and mean suturing time of the artery puncture site were 167 ± 22 min, 26 ± 6 min and 11 ± 5 min, respectively. The mortality rate was 6% (n=4). The morbidity rate was 7.5% (n=5), and in-stent thrombosis was found in 4 cases (n=2 early, n=2 late in stent thrombosis). The results demonstrate the feasibility of standardized stent occlusion of saccular sidewall aneurysms in rats - with low rates of morbidity and mortality. This stent embolization procedure combines the opportunity to study novel concepts of stent or flow diverter based devices as well as the molecular aspects of healing.