Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 12: 660641, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040527

RESUMO

The balance between detoxification and toxicity is linked to enzymes of the drug metabolism Phase I (cytochrome P450 or oxidoreductases) and phase II conjugating enzymes (such as the UGTs). After the reduction of quinones, the product of the reaction, the quinols-if not conjugated-re-oxidizes spontaneously to form the substrate quinone with the concomitant production of the toxic reactive oxygen species (ROS). Herein, we documented the modulation of the toxicity of the quinone menadione on a genetically modified neuroblastoma model cell line that expresses both the quinone oxidoreductase 2 (NQO2, E.C. 1.10.5.1) alone or together with the conjugation enzyme UDP-glucuronosyltransferase (UGT1A6, E.C. 2.4.1.17), one of the two UGT isoenzymes capable to conjugate menadione. As previously shown, NQO2 enzymatic activity is concomitant to massive ROS production, as previously shown. The quantification of ROS produced by the menadione metabolism was probed by electron-paramagnetic resonance (EPR) on cell homogenates, while the production of superoxide was measured by liquid chromatography coupled to mass spectrometry (LC-MS) on intact cells. In addition, the dysregulation of the redox homeostasis upon the cell exposure to menadione was studied by fluorescence measurements. Both EPR and LCMS studies confirmed a significant increase in the ROS production in the NQO2 overexpressing cells due to the fast reduction of quinone into quinol that can re-oxidize to form superoxide radicals. However, the effect of NQO2 inhibition was drastically different between cells overexpressing only NQO2 vs. both NQO2 and UGT. Whereas NQO2 inhibition decreases the amount of superoxide in the first case by decreasing the amount of quinol formed, it increased the toxicity of menadione in the cells co-expressing both enzymes. Moreover, for the cells co-expressing QR2 and UGT the homeostasis dysregulation was lower in presence of menadione than for the its counterpart expressing only QR2. Those results confirmed that the cooperation of the two enzymes plays a fundamental role during the cells' detoxification process. The fluorescence measurements of the variation of redox homeostasis of each cell line and the detection of a glucuronide form of menadiol in the cells co-expressing NQO2 and UGT1A6 enzymes further confirmed our findings.

2.
Chem Biol Interact ; 318: 108974, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32032594

RESUMO

AIM: The aim of this study was the synthesis of ion doped silica-based nanoparticles and the evaluation of their toxic effect on erythrocytes. MATERIALS & METHODS: Their synthesis was performed using the sol-gel method, by the progressive addition of calcium, magnesium and copper ions on pure silica nanoparticles. The toxicity evaluation was based on hemolysis, lipid peroxidation, ROS, H2O2 species and antioxidant enzyme production. RESULTS: The addition of Mg and Cu in the SNs presented better hemocompatibility by protecting erythrocytes from oxidative stress. CONCLUSION: Ion doping with magnesium in the investigated calcium silicate system induces a protective effect in erythrocyte membrane in compare with pure silica nanoparticles.


Assuntos
Cobre/toxicidade , Eritrócitos/efeitos dos fármacos , Magnésio/toxicidade , Nanopartículas/química , Nanopartículas/toxicidade , Dióxido de Silício/química , Células Cultivadas , Cobre/química , Eritrócitos/metabolismo , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio , Magnésio/química , Malondialdeído/metabolismo , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Mol Pharmacol ; 95(3): 269-285, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30567956

RESUMO

Quinone reductase 2 (QR2, E.C. 1.10.5.1) is an enzyme with a feature that has attracted attention for several decades: in standard conditions, instead of recognizing NAD(P)H as an electron donor, it recognizes putative metabolites of NADH, such as N-methyl- and N-ribosyl-dihydronicotinamide. QR2 has been particularly associated with reactive oxygen species and memory, strongly suggesting a link among QR2 (as a possible key element in pro-oxidation), autophagy, and neurodegeneration. In molecular and cellular pharmacology, understanding physiopathological associations can be difficult because of a lack of specific and powerful tools. Here, we present a thorough description of the potent, nanomolar inhibitor [2-(2-methoxy-5H-1,4b,9-triaza(indeno[2,1-a]inden-10-yl)ethyl]-2-furamide (S29434 or NMDPEF; IC50 = 5-16 nM) of QR2 at different organizational levels. We provide full detailed syntheses, describe its cocrystallization with and behavior at QR2 on a millisecond timeline, show that it penetrates cell membranes and inhibits QR2-mediated reactive oxygen species (ROS) production within the 100 nM range, and describe its actions in several in vivo models and lack of actions in various ROS-producing systems. The inhibitor is fairly stable in vivo, penetrates cells, specifically inhibits QR2, and shows activities that suggest a key role for this enzyme in different pathologic conditions, including neurodegenerative diseases.


Assuntos
Piridinas/farmacologia , Alcaloides de Pirrolizidina/farmacologia , Quinona Redutases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Hep G2 , Humanos , Masculino , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
4.
Angew Chem Int Ed Engl ; 55(3): 1085-9, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26629876

RESUMO

Oxidative stress is considered as an important factor and an early event in the etiology of Alzheimer's disease (AD). Cu bound to the peptide amyloid-ß (Aß) is found in AD brains, and Cu-Aß could contribute to this oxidative stress, as it is able to produce in vitro H2O2 and HO˙ in the presence of oxygen and biological reducing agents such as ascorbate. The mechanism of Cu-Aß-catalyzed H2O2 production is however not known, although it was proposed that H2O2 is directly formed from O2 via a 2-electron process. Here, we implement an electrochemical setup and use the specificity of superoxide dismutase-1 (SOD1) to show, for the first time, that H2O2 production by Cu-Aß in the presence of ascorbate occurs mainly via a free O2˙(-) intermediate. This finding radically changes the view on the catalytic mechanism of H2O2 production by Cu-Aß, and opens the possibility that Cu-Aß-catalyzed O2˙(-) contributes to oxidative stress in AD, and hence may be of interest.


Assuntos
Peptídeos beta-Amiloides/química , Cobre/química , Peróxido de Hidrogênio/química , Oxigênio/química , Peptídeos/química , Superóxidos/química , Superóxido Dismutase/química
5.
Eur J Med Chem ; 78: 269-74, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24686013

RESUMO

The synthesis of indolone derivatives and their antiplasmodial activity in vitro against Plasmodium falciparum at the blood stage are described. The 2-aryl-3H-indol-3-ones were synthesized via deoxygenation of indolone-N-oxides. Electrochemical behaviour, antiplasmodial activity and cytotoxicity on human tumor cell lines were compared to those of indolone-N-oxides. The antiplasmodial IC50 (concentrations at 50% inhibition) of these compounds ranged between 49 and 1327 nM. Among them, the 2-(4-dimethylaminophenyl)-5-methoxy-indol-3-one, 7, had the best antiplasmodial activity in vitro (IC50 = 49 nM; FcB1 strain) and selectivity index (SI (CC50 MCF7/IC50 FcB1) = 423.4). Thus, the hits identified in this deoxygenated series correspond to their structural homologs in the N-oxide series with comparable electrochemical behaviour at the nitrogen-carbon double bond.


Assuntos
Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Técnicas Eletroquímicas , Indóis/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Indóis/química , Células MCF-7 , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
6.
J Ethnopharmacol ; 149(1): 75-83, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23769983

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Crinum latifolium L. (CL) leaf extracts have been traditionally used in Vietnam and are now used all over the world for the treatment of prostate cancer. However, the precise cellular mechanisms of the action of CL extracts remain unclear. AIM OF THE STUDY: To examine the effects of CL samples on the anti-tumour activity of peritoneal murine macrophages. MATERIALS AND METHODS: The properties of three extracts (aqueous, flavonoid, alkaloid), one fraction (alkaloid), and one pure compound (6-hydroxycrinamidine) obtained from CL, were studied (i) for redox capacities (DPPH and bleaching beta-carotene assays), (ii) on murine peritoneal macrophages (MTT assay) and on lymphoma EL4-luc2 cells (luciferine assay) for cytotoxicity, (iii) on macrophage polarization (production of ROS and gene expression by PCR), and (iv) on the tumoricidal functions of murine peritoneal macrophages (lymphoma cytotoxicity by co-culture with syngeneic macrophages). RESULTS: The total flavonoid extract with a high antioxidant activity (IC50=107.36 mg/L, DPPH assay) showed an inhibitory action on cancer cells. Alkaloid extracts inhibited the proliferation of lymphoma cells either by directly acting on tumour cells or by activating of the tumoricidal functions of syngeneic macrophages. The aqueous extract induced mRNA expression of tumour necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin 6 (IL-6) indicating differentiation of macrophages into pro-inflammatory M1 polarized macrophages. The total flavonoid, alkaloid extracts and an alkaloid fraction induced the expression of the formyl peptide receptor (FPR) on the surface of the polarized macrophages that could lead to the activation of macrophages towards the M1 phenotype. Aqueous and flavonoid extracts enhanced NADPH quinine oxido-reductase 1 (NQO1) mRNA expression in polarized macrophages which could play an important role in cancer chemoprevention. All the samples studied were non-toxic to normal living cells and the pure alkaloid tested, 6-hydroxycrinamidine, was not active in any of the models investigated. CONCLUSIONS: Our results indicate that CL extracts and alkaloid fraction (but not pure 6-hydroxycrinamidine) inhibit the proliferation of lymphoma cells in multiple pathways. Our results are in accordance with traditional usage and encourage further studies and in vivo assays.


Assuntos
Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Crinum/química , Etnofarmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Alcaloides/isolamento & purificação , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Crinum/crescimento & desenvolvimento , Humanos , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/imunologia , Medicina Tradicional do Leste Asiático , Camundongos , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Espécies Reativas de Oxigênio/metabolismo , Vietnã
7.
J Inorg Biochem ; 126: 7-16, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23708637

RESUMO

Indolone-N-oxides (INODs) are bioreducible and possess remarkable anti-malarial activities in the low nanomolar range in vitro against different Plasmodium falciparum (P. falciparum) strains and in vivo. INODs have an original mechanism of action: they damage the host cell membrane without affecting non-parasitized erythrocytes. These molecules produce a redox signal which activates SYK tyrosine kinases and induces a hyperphosphorylation of AE1 (band 3, erythrocyte membrane protein). The present work aimed to understand the early stages of the biochemical interactions of these compounds with some erythrocyte components from which the redox signal could originate. The interactions were studied in a biomimetic model and compared with those of chloroquine and artemisinin. The results showed that INODs i) do not enter the coordination sphere of the metal in the heme iron complex as does chloroquine; ii) do not generate iron-dependent radicals as does artemisinin; iii) generate stable free radical adducts after reduction at one electron; iv) cannot trap free radicals after reduction. These results confirm that the bioactivity of INODs does not lie in their spin-trapping properties but rather in their pro-oxidant character. This property may be the initiator of the redox signal which activates SYK tyrosine kinases.


Assuntos
Antimaláricos/química , Óxidos N-Cíclicos/química , Cisteína/química , Heme/química , Hemina/química , Indóis/química , Espécies Reativas de Oxigênio/química , Artemisininas/química , Cloroquina/química , Espectroscopia de Ressonância de Spin Eletrônica , Ativação Enzimática , Membrana Eritrocítica/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Ferro/química , Modelos Biológicos , Modelos Químicos , Oxirredução , Proteínas Tirosina Quinases/química , Soluções , Quinase Syk
8.
Free Radic Res ; 45(10): 1184-95, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21762045

RESUMO

NRH:quinone oxidoreductase 2 (QR2) is a cytosolic enzyme that catalyzes the reduction of quinones, such as menadione and co-enzymes Q. With the aim of understanding better the mechanisms of action of QR2, we approached this enzyme catalysis via electron paramagnetic resonance (EPR) measurements of the by-products of the QR2 redox cycle. The variation in the production of oxidative species such as H(2)O(2), and subsequent hydroxyl radical generation, was measured during the course of QR2 activity under aerobic conditions and using pure human enzyme. The effects on the activity of the following were compared: (i) synthetic (N-benzyldihydronicotinamide, BNAH) or natural (nicotinamide riboside, NRH) co-substrates; (ii) synthetic (menadione) or natural (co-enzyme Q0, Q2) substrates; (iii) QR2 modulators and inhibitors (melatonin, resveratrol and S29434); (iv) a pro-drug activated via a redox cycle [CB1954, 5-(aziridin-1-yl)-2,4-dinitrobenzamide]. The results were also compared with those obtained with human QR1. The production of hydroxyl radicals is: (i) observed whatever the substrate/co-substrate used; ii) quenched by adding catalase; (iii) not observed with the specific QR2 inhibitor S29434; (iv) observed with the pro-drug CB1954. While QR2 produced free radicals with this pro-drug, QR1 gave no EPR signal showing the strong reducing capacity of QR2. In conclusion, EPR analysis of QR2 enzyme activity through free radical production enables modulators and effective inhibitors to be distinguished.


Assuntos
Quinona Redutases/química , Quinona Redutases/metabolismo , Animais , Antineoplásicos/farmacocinética , Aziridinas/farmacocinética , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Radicais Livres/química , Radicais Livres/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Oxirredução , Pró-Fármacos/farmacocinética , Quinona Redutases/antagonistas & inibidores , Especificidade por Substrato
9.
Biosens Bioelectron ; 25(12): 2566-72, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20488689

RESUMO

The physiological changes caused by external stimuli can be employed as parameters to study pathogen infection in cells and the effect of drugs. Among analytical methods, impedance is potentially useful to give insight into cellular behavior by studying morphological changes, alterations in the physiological state, production of charged or redox species without interfering with in vitro cellular metabolism and labeling. The present work describes the use of electrochemical impedance spectroscopy to simply monitor by modeling impedance plots (Nyquist diagram) in appropriate equivalent circuit, the changes affecting murine macrophage cell line (RAW 264.7) in response to parasite infection by Leishmania amazonensis or to lipopolysaccharide (LPS) treatment. These results demonstrate the ability of electrochemical impedance spectroscopy to discriminate between two opposite cell responses associated to two different stimuli, one caused by the internalization of a parasite, and the other by activation by a bacterium component. Indeed, the study has allowed the characterization, from an electrical point of view, of the extra-cellular NO radical produced endogenously and in great quantities by the inducible form of NO-synthase in the case of LPS-stimulated macrophages. This production was not observed in the case of Leishmania-infected macrophages for which to survive and multiply, the parasite itself possesses mechanisms which may interfere with NO production. In this latest case, only the intracellular production of ROS was observed. To confirm these interpretations confocal microscopy analysis using the ROS (reactive oxygen species) fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate and electron paramagnetic resonance experiments using Fe(DETC)(2) as NO radical spin trap were carried out.


Assuntos
Leishmaniose/metabolismo , Macrófagos/metabolismo , Macrófagos/parasitologia , Estresse Oxidativo , Animais , Linhagem Celular , Impedância Elétrica , Técnicas Eletroquímicas , Espectroscopia de Ressonância de Spin Eletrônica , Interações Hospedeiro-Parasita , Leishmania mexicana/patogenicidade , Leishmaniose/parasitologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Camundongos , Microscopia Confocal , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Análise Espectral/métodos
10.
J Med Chem ; 53(2): 699-714, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20014857

RESUMO

A series of 66 new indolone-N-oxide derivatives was synthesized with three different methods. Compounds were evaluated for in vitro activity against CQ-sensitive (3D7), CQ-resistant (FcB1), and CQ and pyrimethamine cross-resistant (K1) strains of Plasmodium falciparum (P.f.), as well as for cytotoxic concentration (CC(50)) on MCF7 and KB human tumor cell lines. Compound 26 (5-methoxy-indolone-N-oxide analogue) had the most potent antiplasmodial activity in vitro (<3 nM on FcB1 and = 1.7 nM on 3D7) with a very satisfactory selectivity index (CC(50) MCF7/IC(50) FcB1: 14623; CC(50) KB/IC(50) 3D7: 198823). In in vivo experiments, compound 1 (dioxymethylene derivatives of the indolone-N-oxide) showed the best antiplasmodial activity against Plasmodium berghei, 62% inhibition of the parasitaemia at 30 mg/kg/day.


Assuntos
Antimaláricos/síntese química , Indóis/síntese química , Animais , Antimaláricos/farmacologia , Linhagem Celular Tumoral , Resistência a Medicamentos , Humanos , Indóis/farmacologia , Óxidos/síntese química , Óxidos/farmacologia , Parasitemia/tratamento farmacológico , Testes de Sensibilidade Parasitária , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade
11.
J Ethnopharmacol ; 123(3): 369-77, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19501268

RESUMO

AIM OF THE STUDY: Ciguatera fish poisoning (CFP) is an intertropical ichthyosarcotoxism that manifests in complex assortment of symptoms in humans. Ciguatoxins (CTXs), issued from Gambierdicus spp., are causative agents of this intoxication. We have recently demonstrated that a Pacific CTX (P-CTX-1B) strongly modulated iNOS expression, leading to overproduction of nitric oxide (NO) in RAW 264.7 murine macrophage cells. NO produced in large amounts is involved in a wide range of pathophysiological processes. Many traditional remedies are commonly used in the Pacific against CFP. In this context, bioassay-guided screening was carried out to study NO inhibiting capacity of 28 selected plant extracts. MATERIALS AND METHODS: We prepared aqueous extracts of plants used in New Caledonia in the treatment of CFP and screened their NO inhibitory activity in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. RESULTS: Among 28 plants tested, Euphorbia hirta (Euphorbiaceae), Syzygium malaccense (Myrtaceae), Schinus terebenthifolius (Anacardiaceae), Punica granatum (Punicaceae), Cerbera manghas (Apocynaceae), Vitex trifolia (Labiateae) and Ximenia americana (Olacaceae) showed inhibitory activity, validating their use as traditional remedies in CFP, and the potential for use in the treatment of conditions accompanied by NO overproduction. CONCLUSION: These plants are promising candidates for further screening of their active compounds through activity-guided fractionation.


Assuntos
Ciguatera , Ciguatoxinas/metabolismo , Macrófagos/efeitos dos fármacos , Magnoliopsida , Óxido Nítrico/antagonistas & inibidores , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , Ciguatera/tratamento farmacológico , Ciguatera/metabolismo , Humanos , Lipopolissacarídeos , Macrófagos/metabolismo , Medicina Tradicional , Camundongos , Óxido Nítrico/biossíntese , Extratos Vegetais/uso terapêutico , Plantas Medicinais
12.
Free Radic Res ; 40(1): 11-20, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16298755

RESUMO

The ability of ten imidazolyl nitrones to directly scavenge free radicals (R(*)) generated in polar ((*)OH, O(*)(2)(-), SO(*)(3)(-) cysteinyl, (*)CH(3)) or in apolar (CH(3)-(*)CH-CH(3)) media has been studied. When oxygen or sulfur-centered radicals are generated in polar media, EPR spectra are not or weakly observed with simple spectral features. Strong line intensities and more complicated spectra are observed with the isopropyl radical generated in an apolar medium. Intermediate results are obtained with (*)CH(3) generated in a polar medium. EPR demonstrates the ability of these nitrones to trap radicals to the nitrone C(alpha) atom (alpha radical adduct) and to the imidazol C(5) atom (5-radical adduct). Beside the nucleophilic addition of the radical to the C(alpha) atom, the EPR studies suggest a two-step mechanism for the overall reaction of R(*) attacking the imidazol core. The two steps seem to occur very fast with the (*)OH radical obtained in a polar medium and slower with the isopropyl radical prepared in benzene. In conclusion, imidazolyl nitrones present a high capacity to trap and stabilize carbon-centered radicals.


Assuntos
Sequestradores de Radicais Livres/química , Imidazóis/química , Óxidos de Nitrogênio/química , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Peróxido de Hidrogênio/química , Ferro/química , Estresse Oxidativo , Marcadores de Spin , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA