Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557976

RESUMO

The objective of the present work was to optimize the extraction of phytochemicals from Hamelia patens Jacq. by ultrasound-assisted extraction. Taguchi L9 orthogonal array was used to evaluate the factors solid/liquid ratio (1:8, 1:12, and 1:16), extraction time (10, 20, and 30 min), and ethanol concentration (0, 35, and 70%). Total polyphenols were the response variable. Chromatographic fractionation using Amberlite XAD-16 was carried out and the total polyphenols, flavonoids, and condensed tannins were quantified. The redox potential, the reduction of the 2,2-diphenyl-1-picrylhydrazyl (DPPH), and the lipid oxidation inhibition were determined. Anti-bacterial activity was evaluated. The phytochemicals were identified by liquid chromatography coupled to mass spectrometry. Optimal extraction conditions were a solid/liquid ratio of 1:16, ethanol of 35%, and 10 min of ultrasound-assisted extraction. Maximum polyphenol content in the crude extract was 1689.976 ± 86.430 mg of gallic acid equivalents (GAE)/100 g of dried plant material. The purified fraction showed a total polyphenols content of 3552.84 ± 7.25 mg of GAE, flavonoids 1316.17 ± 0.27 mg of catechin equivalents, and condensed tannins 1694.87 ± 22.21 mg of procyanidin B1 equivalents, all per 100 g of purified fraction. Its redox potential was 553.93 ± 1.22 mV, reducing 63.08 ± 0.42% of DPPH radical and inhibiting 77.78 ± 2.78% of lipid oxidation. The polyphenols demonstrated antibacterial activity against Escherichia coli, Klebsiella pneumonia, and Enterococcus faecalis. The HPLC-ESI-MS analysis revealed the presence of coumarins, hydroxycinnamic acids, and flavonoids.


Assuntos
Hamelia , Proantocianidinas , Polifenóis/química , Proantocianidinas/química , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Antioxidantes/farmacologia , Antioxidantes/análise , Flavonoides/farmacologia , Flavonoides/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Etanol/química , Ácido Gálico/análise , Lipídeos
2.
Plants (Basel) ; 11(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36079707

RESUMO

Festuca arundinacea Schreb. is a widely used type of forage due to its great ecological breadth and adaptability. An agricultural intervention that improves the selenium content in cultivated plants has been defined as bio-fortification, a complementary strategy to improve human and non-human animals' nutrition. The advancement of science has led to an increased number of studies based on nanotechnologies, such as the development of nanoparticles (NPs) and their application in crop plants. Studies show that NPs have different physicochemical properties compared to bulk materials. The objectives of this study were (1) to determine the behavior of F. arundinacea Schreb. plants cultivated with Se nanoparticles, (2) to identify the specific behavior of the agronomic and productive variables of the F. arundinacea Schreb. plants, and (3) to quantify the production and quality of the forage produced from the plant (the bioactive compounds' concentrations, antioxidant activity, and the concentration of selenium). Three different treatments of SeNPs were established (0, 1.5, 3.0, and 4.5 mg/mL). The effects of a foliar fertilization with SeNPs on the morphological parameters such as the root size, plant height, and biomass production were recorded, as well as the effects on the physicochemical parameters such as the crude protein (CP), lipids (L), crude fiber (CF), neutral detergent fiber (NDF), acid detergent fiber (ADF), carbohydrates (CH), the content of total phenols, total flavonoids, tannins, quantification of selenium and antioxidant activity 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH). Significant differences (p < 0.05) were found between treatments in all the response variables. The best results were obtained with foliar application treatments with 3.0 and 4.5 mg/mL with respect to the root size (12.79 and 15.59 cm) and plant height (26.18 and 29.34 cm). The F. arundinacea Schreb. plants fertilized with 4.5 mg/L had selenium contents of 0.3215, 0.3191, and 0.3218 mg/Kg MS; total phenols of 249.56, 280.02, and 274 mg EAG/100 g DM; and total flavonoids of 63.56, 64.96, and 61.16 mg QE/100 g DM. The foliar biofortified treatment with a concentration of 4.5 mg/mL Se NPs had the highest antioxidant capacities (284.26, 278.35, and 289.96 mg/AAE/100 g).

3.
Food Sci Biotechnol ; 28(5): 1553-1561, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31695955

RESUMO

The use of unconventional sources is very relevant in the food area. In the present study the development of active films with the addition of bioextract (BE) or microencapsulated bioextract (MBE) from xoconostle (Opuntia oligacantha) on chayotextle starch was investigated. The film formulations were: 4 g of chayotextle starch, 2 g of glycerol and 180 g of water, three films with BE added (0.4, 0.8 and 1.2 g) and three films with MBE added (0.4, 0.8 and 1.2 g). Total phenols, total flavonoids, antioxidant activity (ABTS and DPPH), Salmonella typhimurium inhibition, color and mechanical properties of the films were analyzed. The film with 1.2 g of MBE showed high concentration of total phenols (54.12 ± 0.77 mg EAG/100 g), total flavonoids (16.65 ± 0.10 mg QE/100 g) and antioxidant activity (29.11 ± 0.48 and 41.42 ± 1.81 mg EAA for ABTS and DPPH respectively). The addition of bioextract from xoconostle is an option for the development of active films with antioxidant properties.

4.
Antioxidants (Basel) ; 8(10)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640249

RESUMO

The objective of the present study was to determine the effect of the application of a nanoemulsion made of orange essential oil and Opuntia oligacantha extract on avocado quality during postharvest. The nanoemulsion was applied as a coating in whole fruits, and the following treatments were assessed: concentrated nanoemulsion (CN), 50% nanoemulsion (N50), 25% nanoemulsion (N25) and control (C). Weight loss, firmness, polyphenol oxidase (PPO) activity, total soluble solids, pH, external and internal colour, total phenols, total flavonoids, antioxidant activity by 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH), while the structural evaluation of the epicarp was assessed through histological cuts. Significant differences were found (p < 0.05) among the treatments in all the response variables. The best results were with the N50 and N25 treatments for firmness and weight loss, finding that the activity of the PPO was diminished, and a delay in the darkening was observed in the coated fruits. Furthermore, the nanoemulsion treatments maintained the total phenol and total flavonoid contents and potentiated antioxidant activity at 60 days. This histological study showed that the nanoemulsion has a delaying effect on the maturation of the epicarp. The results indicate that using this nanoemulsion as a coating is an effective alternative to improve the postharvest life of avocado.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA