Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1140, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602902

RESUMO

Clostridioides difficile spores produced during infection are important for the recurrence of the disease. Here, we show that C. difficile spores gain entry into the intestinal mucosa via pathways dependent on host fibronectin-α5ß1 and vitronectin-αvß1. The exosporium protein BclA3, on the spore surface, is required for both entry pathways. Deletion of the bclA3 gene in C. difficile, or pharmacological inhibition of endocytosis using nystatin, leads to reduced entry into the intestinal mucosa and reduced recurrence of the disease in a mouse model. Our findings indicate that C. difficile spore entry into the intestinal barrier can contribute to spore persistence and infection recurrence, and suggest potential avenues for new therapies.


Assuntos
Clostridioides difficile/fisiologia , Infecções por Clostridium/microbiologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Intestinos/microbiologia , Intestinos/patologia , Esporos Bacterianos/fisiologia , Animais , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Linhagem Celular , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/ultraestrutura , Colágeno/metabolismo , Endocitose , Células Epiteliais/ultraestrutura , Feminino , Fibronectinas/metabolismo , Humanos , Integrinas/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos C57BL , Nistatina/farmacologia , Ligação Proteica/efeitos dos fármacos , Recidiva , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/ultraestrutura , Ácido Taurocólico/farmacologia , Vitronectina/metabolismo
2.
PLoS Pathog ; 14(8): e1007199, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089172

RESUMO

Clostridium difficile is a Gram-positive spore-former bacterium and the leading cause of nosocomial antibiotic-associated diarrhea that can culminate in fatal colitis. During the infection, C. difficile produces metabolically dormant spores, which persist in the host and can cause recurrence of the infection. The surface of C. difficile spores seems to be the key in spore-host interactions and persistence. The proteome of the outermost exosporium layer of C. difficile spores has been determined, identifying two cysteine-rich exosporium proteins, CdeC and CdeM. In this work, we explore the contribution of both cysteine-rich proteins in exosporium integrity, spore biology and pathogenesis. Using targeted mutagenesis coupled with transmission electron microscopy we demonstrate that both cysteine rich proteins, CdeC and CdeM, are morphogenetic factors of the exosporium layer of C. difficile spores. Notably, cdeC, but not cdeM spores, exhibited defective spore coat, and were more sensitive to ethanol, heat and phagocytic cells. In a healthy colonic mucosa (mouse ileal loop assay), cdeC and cdeM spore adherence was lower than that of wild-type spores; while in a mouse model of recurrence of the disease, cdeC mutant exhibited an increased infection and persistence during recurrence. In a competitive infection mouse model, cdeC mutant had increased fitness over wild-type. Through complementation analysis with FLAG fusion of known exosporium and coat proteins, we demonstrate that CdeC and CdeM are required for the recruitment of several exosporium proteins to the surface of C. difficile spores. CdeC appears to be conserved exclusively in related Peptostreptococcaeace family members, while CdeM is unique to C. difficile. Our results sheds light on how CdeC and CdeM affect the biology of C. difficile spores and the assembly of the exosporium layer and, demonstrate that CdeC affect C. difficile pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridioides difficile/patogenicidade , Infecções por Clostridium/metabolismo , Esporos Bacterianos/metabolismo , Animais , Proteínas de Bactérias/química , Parede Celular/química , Parede Celular/metabolismo , Clostridioides difficile/química , Clostridioides difficile/metabolismo , Cisteína/química , Cisteína/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Camundongos , Esporos Bacterianos/química
3.
J Nanobiotechnology ; 15(1): 1, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049488

RESUMO

BACKGROUND: Nanotechnology is a science that involves imaging, measurement, modeling and a manipulation of matter at the nanometric scale. One application of this technology is drug delivery systems based on nanoparticles obtained from natural or synthetic sources. An example of these systems is synthetized from poly(3-hydroxybutyrate-co-3-hydroxyvalerate), which is a biodegradable, biocompatible and a low production cost polymer. The aim of this work was to investigate the uptake mechanism of PHBV nanoparticles in two different epithelial cell lines (HeLa and SKOV-3). RESULTS: As a first step, we characterized size, shape and surface charge of nanoparticles using dynamic light scattering and transmission electron microscopy. Intracellular incorporation was evaluated through flow cytometry and fluorescence microscopy using intracellular markers. We concluded that cellular uptake mechanism is carried out in a time, concentration and energy dependent way. Our results showed that nanoparticle uptake displays a cell-specific pattern, since we have observed different colocalization in two different cell lines. In HeLa (Cervical cancer cells) this process may occur via classical endocytosis pathway and some internalization via caveolin-dependent was also observed, whereas in SKOV-3 (Ovarian cancer cells) these patterns were not observed. Rearrangement of actin filaments showed differential nanoparticle internalization patterns for HeLa and SKOV-3. Additionally, final fate of nanoparticles was also determined, showing that in both cell lines, nanoparticles ended up in lysosomes but at different times, where they are finally degraded, thereby releasing their contents. CONCLUSIONS: Our results, provide novel insight about PHBV nanoparticles internalization suggesting that for develop a proper drug delivery system is critical understand the uptake mechanism.


Assuntos
Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Nanopartículas/metabolismo , Neoplasias/tratamento farmacológico , Poliésteres/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Endocitose , Células HeLa , Humanos , Nanopartículas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA