Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L327-L340, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772903

RESUMO

Repair and regeneration of a diseased lung using stem cells or bioengineered tissues is an exciting therapeutic approach for a variety of lung diseases and critical illnesses. Over the past decade, increasing evidence from preclinical models suggests that mesenchymal stromal cells, which are not normally resident in the lung, can be used to modulate immune responses after injury, but there have been challenges in translating these promising findings to the clinic. In parallel, there has been a surge in bioengineering studies investigating the use of artificial and acellular lung matrices as scaffolds for three-dimensional lung or airway regeneration, with some recent attempts of transplantation in large animal models. The combination of these studies with those involving stem cells, induced pluripotent stem cell derivatives, and/or cell therapies is a promising and rapidly developing research area. These studies have been further paralleled by significant increases in our understanding of the molecular and cellular events by which endogenous lung stem and/or progenitor cells arise during lung development and participate in normal and pathological remodeling after lung injury. For the 2023 Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases Conference, scientific symposia were chosen to reflect the most cutting-edge advances in these fields. Sessions focused on the integration of "omics" technologies with function, the influence of immune cells on regeneration, and the role of the extracellular matrix in regeneration. The necessity for basic science studies to enhance fundamental understanding of lung regeneration and to design innovative translational studies was reinforced throughout the conference.


Assuntos
Bioengenharia , Pneumopatias , Pulmão , Humanos , Pneumopatias/terapia , Pneumopatias/patologia , Pulmão/patologia , Animais , Bioengenharia/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco/citologia , Engenharia Tecidual/métodos , Regeneração/fisiologia , Transplante de Células-Tronco/métodos
2.
Respir Res ; 25(1): 28, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217012

RESUMO

BACKGORUND: Tissue-engineered tracheal grafts (TETG) can be recellularized by the host or pre-seeded with host-derived cells. However, the impact of airway disease on the recellularization process is unknown. METHODS: In this study, we determined if airway disease alters the regenerative potential of the human tracheobronchial epithelium (hTBE) obtained by brushing the tracheal mucosa during clinically-indicated bronchoscopy from 48 pediatric and six adult patients. RESULTS: Our findings revealed that basal cell recovery and frequency did not vary by age or region. At passage 1, all samples produced enough cells to cellularize a 3.5 by 0.5 cm2 graft scaffold at low cell density (~ 7000 cells/cm2), and 43.75% could cellularize a scaffold at high cell density (~ 100,000 cells/cm2). At passage 2, all samples produced the number of cells required for both recellularization models. Further evaluation revealed that six pediatric samples (11%) and three (50%) adult samples contained basal cells with a squamous basal phenotype. These cells did not form a polarized epithelium or produce differentiated secretory or ciliated cells. In the pediatric population, the squamous basal cell phenotype was associated with degree of prematurity (< 28 weeks, 64% vs. 13%, p = 0.02), significant pulmonary history (83% vs. 34%, p = 0.02), specifically with bronchopulmonary dysplasia (67% vs. 19%, p = 0.01), and patients who underwent previous tracheostomy (67% vs. 23%, p = 0.03). CONCLUSIONS: In summary, screening high-risk pediatric or adult population based on clinical risk factors and laboratory findings could define appropriate candidates for airway reconstruction with tracheal scaffolds. LEVEL OF EVIDENCE: Level III Cohort study.


Assuntos
Carcinoma de Células Escamosas , Transtornos Respiratórios , Adulto , Recém-Nascido , Humanos , Criança , Estudos de Coortes , Epitélio , Células Epiteliais/patologia , Traqueia/cirurgia , Traqueia/patologia , Células-Tronco
3.
Bioeng Transl Med ; 8(5): e10525, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693070

RESUMO

There is currently no suitable autologous tissue to bridge large tracheal defects. As a result, no standard of care exists for long-segment tracheal reconstruction. Tissue engineering has the potential to create a scaffold from allografts or xenografts that can support neotissue regeneration identical to the native trachea. Recent advances in tissue engineering have led to the idea of partial decellularization that allows for the creation of tracheal scaffolds that supports tracheal epithelial formation while preserving mechanical properties. However, the ability of partial decellularization to eliminate graft immunogenicity remains unknown, and understanding the immunogenic properties of partially decellularized tracheal grafts (PDTG) is a critical step toward clinical translation. Here, we determined that tracheal allograft immunogenicity results in epithelial cell sloughing and replacement with dysplastic columnar epithelium and that partial decellularization creates grafts that are able to support an epithelium without histologic signs of rejection. Moreover, allograft implantation elicits CD8+ T-cell infiltration, a mediator of rejection, while PDTG did not. Hence, we establish that partial decellularization eliminates allograft immunogenicity while creating a scaffold for implantation that can support spatially appropriate airway regeneration.

4.
Laryngoscope Investig Otolaryngol ; 7(6): 2119-2125, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36544928

RESUMO

Objective: While airway epithelial biorepositories have established roles in the study of bronchial progenitor stem (basal) cells, the utility of a bank of tracheal basal cells from pediatric patients, who have or are suspected of having an airway disease, has not been established. In vitro study of these cells can enhance options for tracheal restoration, graft design, and disease modeling. Development of a functional epithelium in these settings is a key measure. The aim of this study was the creation a tracheal basal cell biorepository and assessment of recovered cells. Methods: Pediatric patients undergoing bronchoscopy were identified and endotracheal brush (N = 29) biopsies were collected. Cells were cultured using the modified conditional reprogramming culture (mCRC) method. Samples producing colonies by day 14 were passaged and cryopreserved. To explore differentiation potential, cells were thawed and differentiated using the air-liquid interface (ALI) method. Results: No adverse events were associated with biopsy collection. Of 29 brush biopsies, 16 (55%) were successfully cultured to passage 1/cryopreserved. Samples with higher initial cell yields were more likely to achieve this benchmark. Ten unique donors were then thawed for analysis of differentiation. The average age was 2.2 ± 2.2 years with five donors (50%) having laryngotracheal pathology. Nine donors (90%) demonstrated differentiation capacity at 21 days of culture, as indicated by detection of ciliated cells (ACT+) and mucous cells (MUC5B+). Conclusion: Pediatric tracheal basal cells can be successfully collected and cryopreserved. Recovered cells retain the ability to differentiate into epithelial cell types in vitro. Level of Evidence: Level 3.

5.
Front Genome Ed ; 4: 781531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35199100

RESUMO

Respiratory system damage is the primary cause of mortality in individuals who are exposed to vesicating agents including sulfur mustard (SM). Despite these devastating health complications, there are no fielded therapeutics that are specific for such injuries. Previous studies reported that SM inhalation depleted the tracheobronchial airway epithelial stem cell (TSC) pool and supported the hypothesis, TSC replacement will restore airway epithelial integrity and improve health outcomes for SM-exposed individuals. TSC express Major Histocompatibility Complex (MHC-I) transplantation antigens which increases the chance that allogeneic TSC will be rejected by the patient's immune system. However, previous studies reported that Beta-2 microglobulin (B2M) knockout cells lacked cell surface MHC-I and suggested that B2M knockout TSC would be tolerated as an allogeneic graft. This study used a Cas9 ribonucleoprotein (RNP) to generate B2M-knockout TSC, which are termed Universal Donor Stem Cells (UDSC). Whole genome sequencing identified few off-target modifications and demonstrated the specificity of the RNP approach. Functional assays demonstrated that UDSC retained their ability to self-renew and undergo multilineage differentiation. A preclinical model of SM inhalation was used to test UDSC efficacy and identify any treatment-associated adverse events. Adult male Sprague-Dawley rats were administered an inhaled dose of 0.8 mg/kg SM vapor which is the inhaled LD50 on day 28 post-challenge. On recovery day 2, vehicle or allogeneic Fisher rat UDSC were delivered intravenously (n = 30/group). Clinical parameters were recorded daily, and planned euthanasia occurred on post-challenge days 7, 14, and 28. The vehicle and UDSC treatment groups exhibited similar outcomes including survival and a lack of adverse events. These studies establish a baseline which can be used to further develop UDSC as a treatment for SM-induced airway disease.

6.
Laryngoscope ; 132(4): 737-746, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34153127

RESUMO

OBJECTIVES/HYPOTHESIS: Tissue-engineered tracheal grafts (TETGs) offer a potential solution for repair of long-segment airway defects. However, preclinical and clinical TETGs have been associated with chronic inflammation and macrophage infiltration. Macrophages express great phenotypic heterogeneity (generally characterized as classically activated [M1] vs. alternatively activated [M2]) and can influence tracheal repair and regeneration. We quantified and characterized infiltrating host macrophages using mouse microsurgical tracheal replacement models. STUDY DESIGN: Translational research, animal model. METHODS: We assessed macrophage infiltration and phenotype in animals implanted with syngeneic tracheal grafts, synthetic TETGs, or partially decellularized tracheal scaffolds (DTSs). RESULTS: Macrophage infiltration was observed following tracheal replacement with syngeneic trachea. Both M1 and M2 macrophages were present in native trachea and increased during early tracheal repair (P = .014), with an M1/M2 ratio of 0.48 ± 0.15. In contrast, orthotopic implantation of synthetic TETGs resulted in a shift to M1 predominant macrophage phenotype with an increased M1/M2 ratio of 1.35 ± 0.41 by 6 weeks following implant (P = .035). Modulation of the synthetic scaffold with the addition of polyglycolic acid (PGA) resulted in a reduction of M1/M2 ratio due to an increase in M2 macrophages (P = .006). Using systemic macrophage depletion, the M1/M2 ratio reverted to native values in synthetic TETG recipients and was associated with an increase in graft epithelialization. Macrophage ratios seen in DTSs were similar to native values. CONCLUSIONS: M1 and M2 macrophages are present during tracheal repair. Poor epithelialization with synthetic TETG is associated with an elevation of the M1/M2 ratio. Macrophage phenotype can be altered with scaffold composition and host-directed systemic therapies. DTSs exhibit M1/M2 ratios similar to those seen in native trachea and syngeneic tracheal replacement. LEVEL OF EVIDENCE: NA Laryngoscope, 132:737-746, 2022.


Assuntos
Macrófagos , Traqueia , Animais , Humanos , Inflamação , Camundongos , Ácido Poliglicólico , Regeneração , Traqueia/transplante
7.
J Cyst Fibros ; 20(1): 165-172, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33187933

RESUMO

BACKGROUND: The conducting airway epithelium is repaired by tissue specific stem cells (TSC). In response to mild/moderate injury, each TSC repairs a discrete area of the epithelium. In contrast, severe epithelial injury stimulates TSC migration and expands the stem cell's reparative domain. Lung transplantation (LTx) can cause a moderate/severe airway injury and the remodeled airway contains a chimeric mixture of donor and recipient cells. These studies supported the hypothesis, LTx stimulates TSC migration resulting in epithelial chimerism. We tested this hypothesis in cystic fibrosis (CF) LTx patients. METHODS: Airway mucosal injury was quantified using bronchoscopic imaging and a novel grading system. Bronchial brushing was used to recover TSC from 10 sites in the recipient and allograft airways. TSC chimerism was quantified by short tandem repeat analysis. TSC self-renewal and differentiation potential were assayed using the clone forming cell frequency and air-liquid-interface methods. Electrophysiology was used to determine if TSC chimerism altered epithelial ion channel activity. RESULTS: LTx caused a mild to moderate airway mucosal injury. Donor and recipient TSC were identified in 91% of anastomotic sites and 93% of bronchial airways. TSC chimerism did not alter stem cell self-renewal or differentiation potential. The frequency of recipient TSC was proportional to CF Transmembrane Conductance Regulator (CFTR)-dependent ion channel activity and 33% of allograft regions were at risk for abnormal CFTR activity. CONCLUSIONS: LTx in CF patients stimulates bidirectional TSC migration across the anastomoses. TSC chimerism may alter ion homeostasis and compromise the host defense capability of the allograft airway epithelium.


Assuntos
Quimerismo , Fibrose Cística/patologia , Células Epiteliais , Transplante de Pulmão , Mucosa Respiratória/citologia , Células-Tronco , Brônquios , Humanos
8.
Hum Gene Ther ; 31(17-18): 956-972, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32741223

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disease caused by variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although CF affects multiple organs, the primary cause of mortality is respiratory failure resulting from poor clearance of hyperviscous secretions and subsequent airway infection. Recently developed CFTR modulators provide significant therapeutic benefit to the majority of CF individuals. However, treatments directed at the underlying cause are needed for the ∼7% of CF patients who are not expected to be responsive to these modulators. Genome editing can restore the native CFTR genetic sequence and function to mutant cells, representing an approach to establish durable physiologic CFTR correction. Although editing the CFTR gene in various airway cell types may transiently restore CFTR activity, effort is focused on editing airway basal stem/progenitor cells, since their correction would allow appropriate and durable expression of CFTR in stem cell-derived epithelial cell types. Substantial progress has been made to directly correct airway basal cells in vitro, theoretically enabling transplantation of autologous corrected cells to regenerate an airway with CFTR functional cells. Another approach to create autologous, gene-edited airway basal cells is derivation of CF donor-specific induced pluripotent stem cells, correction of the CFTR gene, and subsequent directed differentiation to airway basal cells. Further work is needed to translate these advances by developing effective transplantation methods. Alternatively, gene editing in vivo may enable CFTR correction. However, this approach will require robust delivery methods ensuring that basal cells are efficiently targeted and corrected. Recent advances in gene editing-based therapies provide hope that the genetic underpinning of CF can be durably corrected in airway epithelial stem cells, thereby preventing or treating lung disease in all people with CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/terapia , Edição de Genes/métodos , Mucosa Respiratória/citologia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Mucosa Respiratória/metabolismo , Células-Tronco/metabolismo
9.
Acta Biomater ; 102: 181-191, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31707085

RESUMO

The ideal construct for tracheal replacement remains elusive in the management of long segment airway defects. Tissue engineered tracheal grafts (TETG) have been limited by the development of graft stenosis or collapse, infection, or lack of an epithelial lining. We applied a mouse model of orthotopic airway surgery to assess the impact of three critical barriers encountered in clinical applications: the scaffold, the extent of intervention, and the impact of cell seeding and characterized their impact on graft performance. First, synthetic tracheal scaffolds electrospun from polyethylene terephthalate / polyurethane (PET/PU) were orthotopically implanted in anterior tracheal defects of C57BL/6 mice. Scaffolds demonstrated complete coverage with ciliated respiratory epithelium by 2 weeks. Epithelial migration was accompanied by macrophage infiltration which persisted at long term (>6 weeks) time points. We then assessed the impact of segmental tracheal implantation using syngeneic trachea as a surrogate for the ideal tracheal replacement. Graft recovery involved local upregulation of epithelial progenitor populations and there was no evidence of graft stenosis or necrosis. Implantation of electrospun synthetic tracheal scaffold for segmental replacement resulted in respiratory distress and required euthanasia at an early time point. There was limited epithelial coverage of the scaffold with and without seeded bone marrow-derived mononuclear cells (BM-MNCs). We conclude that synthetic scaffolds support re-epithelialization in orthotopic patch implantation, syngeneic graft integration occurs with focal repair mechanisms, however epithelialization in segmental synthetic scaffolds is limited and is not influenced by cell seeding. STATEMENT OF SIGNIFICANCE: The life-threatening nature of long-segment tracheal defects has led to clinical use of tissue engineered tracheal grafts in the last decade for cases of compassionate use. However, the ideal tracheal reconstruction using tissue-engineered tracheal grafts (TETG) has not been clarified. We addressed the core challenges in tissue engineered tracheal replacement (re-epithelialization and graft patency) by defining the role of cell seeding with autologous bone marrow-derived mononuclear cells, the mechanism of respiratory epithelialization and proliferation, and the role of the inflammatory immune response in regeneration. This research will facilitate comprehensive understanding of cellular regeneration and neotissue formation on TETG, which will permit targeted therapies for accelerating re-epithelialization and attenuating stenosis in tissue engineered airway replacement.


Assuntos
Mucosa Respiratória/metabolismo , Alicerces Teciduais/química , Traqueia/metabolismo , Animais , Células da Medula Óssea/metabolismo , Técnicas de Cultura de Células , Feminino , Camundongos Endogâmicos C57BL , Polietilenotereftalatos/química , Poliuretanos/química , Procedimentos de Cirurgia Plástica/métodos , Engenharia Tecidual/métodos , Traqueia/cirurgia
10.
Otolaryngol Head Neck Surg ; 161(3): 458-467, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31035858

RESUMO

OBJECTIVES: Humans receiving tissue-engineered tracheal grafts have experienced poor outcomes ultimately resulting in death or the need for graft explantation. We assessed the performance of the synthetic scaffolds used in humans with an ovine model of orthotopic tracheal replacement, applying standard postsurgical surveillance and interventions to define the factors that contributed to the complications seen at the bedside. STUDY DESIGN: Large animal model. SETTING: Pediatric academic research institute. SUBJECTS AND METHODS: Human scaffolds were manufactured with an electrospun blend of polyethylene terephthalate and polyurethane reinforced with polycarbonate rings. They were seeded with autologous bone marrow-derived mononuclear cells and implanted in sheep. Animals were evaluated with routine bronchoscopy and fluoroscopy. Endoscopic dilation and stenting were performed to manage graft stenosis for up to a 4-month time point. Grafts and adjacent native airway were sectioned and evaluated with histology and immunohistochemistry. RESULTS: All animals had signs of graft stenosis. Three of 5 animals (60%) designated for long-term surveillance survived until the 4-month time point. Graft dilation and stent placement resolved respiratory symptoms and prolonged survival. Necropsy demonstrated evidence of infection and graft encapsulation. Granulation tissue with signs of neovascularization was seen at the anastomoses, but epithelialization was never observed. Acute and chronic inflammation of the native airway epithelium was observed at all time points. Architectural changes of the scaffold included posterior wall infolding and scaffold delamination. CONCLUSIONS: In our ovine model, clinically applied synthetic tissue-engineered tracheas demonstrated infectious, inflammatory, and mechanical failures with a lack of epithelialization and neovascularization.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Traqueia/cirurgia , Animais , Humanos , Polietilenotereftalatos , Poliuretanos , Complicações Pós-Operatórias/epidemiologia , Desenho de Prótese , Ovinos , Engenharia Tecidual/métodos , Resultado do Tratamento
11.
J Vis Exp ; (146)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30985752

RESUMO

Treatment options for congenital or secondary long segment tracheal defects have historically been limited due to an inability to replace functional tissue. Tissue engineering holds great promise as a potential solution with its ability to integrate cells and signaling molecules into a 3-dimensional scaffold. Recent work with tissue engineered tracheal grafts (TETGs) has seen some success but their translation has been limited by graft stenosis, graft collapse, and delayed epithelialization. In order to investigate the mechanisms driving these issues, we have developed a mouse model for tissue engineered tracheal graft implantation. TETGs were constructed using electrospun polymers polyethylene terephthalate (PET) and polyurethane (PU) in a mixture of PET and PU (20:80 percent weight). Scaffolds were then seeded using bone marrow mononuclear cells isolated from 6-8 week-old C57BL/6 mice by gradient centrifugation. Ten million cells per graft were seeded onto the lumen of the scaffold and allowed to incubate overnight before implantation between the third and seventh tracheal rings. These grafts were able to recapitulate the findings of stenosis and delayed epithelialization as demonstrated by histological analysis and lack of Keratin 5 and Keratin 14 basal epithelial cells on immunofluorescence. This model will serve as a tool for investigating cellular and molecular mechanisms involved in host remodeling.


Assuntos
Engenharia Tecidual/métodos , Traqueia/transplante , Animais , Constrição Patológica/patologia , Células Epiteliais/citologia , Camundongos Endogâmicos C57BL , Modelos Animais , Polietilenotereftalatos/química , Alicerces Teciduais/química
12.
Stem Cells Transl Med ; 8(3): 225-235, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30506964

RESUMO

The human airway epithelium is regenerated by basal cells. Thus, basal cell therapy has the potential to cure cystic fibrosis (CF) lung disease. We previously reported that the human basal cells repopulated the mouse airway epithelium after transplantation, and we estimated that 60 million cells would be needed to treat a human patient. To further develop cell therapy, we compared the proliferation potential of non-CF and CF tissue-derived bronchial basal cells. Three methods were used: regenerative cell frequency, burst size, and cell division frequency. Second, we used a serial passage strategy to determine if CF basal cells could be amplified to the estimated therapeutic dose. These studies evaluated that tissue-derived bronchial basal cells and the basal cells that were recovered by brushing bronchial airways or the nasal respiratory epithelium. Finally, we used the limiting dilution method to isolate non-CF and CF basal cell clones. The proliferation assays and the air-liquid-interface differentiation method were used to determine if cell amplification altered the proliferation and/or differentiation potential of clonal isolates. We demonstrate that: (a) non-CF and CF basal cell proliferation is similar, (b) CF basal cells can be amplified to a therapeutic cell dose, and (c) amplified non-CF and CF basal cell clones differentiate normally. Despite these encouraging findings, we also find that the cell amplification process depletes the regenerative basal cell pool. Analysis of basal cell clones indicates that serial passage selects for long-lived basal cells and raise the possibility that prospective isolation of these stem-like cells will improve the efficacy of cell replacement therapy. Stem Cells Translational Medicine 2019;8:225&235.


Assuntos
Fibrose Cística/fisiopatologia , Fibrose Cística/terapia , Pulmão/fisiopatologia , Regeneração/fisiologia , Adolescente , Adulto , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Criança , Pré-Escolar , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Feminino , Humanos , Lactente , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Mucosa Respiratória/metabolismo , Mucosa Respiratória/fisiopatologia , Adulto Jovem
13.
Angiogenesis ; 22(1): 95-102, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30168024

RESUMO

Vascular complications such as bleeding due to gastrointestinal telangiectatic anomalies, pulmonary arteriovenous malformations, hepatopulmonary syndrome, and retinal vessel abnormalities are being reported in patients with telomere biology disorders (TBDs) more frequently than previously described. The international clinical care consortium of telomere-associated ailments and family support group Dyskeratosis Congenita Outreach, Inc. held a workshop on vascular abnormalities in the TBDs at the National Cancer Institute in October 2017. Clinicians and basic scientists reviewed current data on vascular complications, hypotheses for the underlying biology and developed new collaborations to address the etiology and clinical management of vascular complications in TBDs.


Assuntos
Fístula Arteriovenosa , Artéria Pulmonar/anormalidades , Veias Pulmonares/anormalidades , Telangiectasia , Telômero , Animais , Fístula Arteriovenosa/genética , Fístula Arteriovenosa/metabolismo , Fístula Arteriovenosa/patologia , Educação , Humanos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Veias Pulmonares/metabolismo , Veias Pulmonares/patologia , Telangiectasia/genética , Telangiectasia/metabolismo , Telangiectasia/patologia , Telômero/genética , Telômero/metabolismo , Telômero/patologia
14.
J Cyst Fibros ; 18(5): 622-629, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30366849

RESUMO

BACKGROUND: There are no effective treatments for Burkholderia cenocepacia in patients with cystic fibrosis (CF) due to bacterial multi-drug resistance and defective host killing. We demonstrated that decreased bacterial killing in CF is caused by reduced macrophage autophagy due to defective cystic fibrosis transmembrane conductance regulator (CFTR) function. AR-12 is a small molecule autophagy inducer that kills intracellular pathogens such as Francisella. We evaluated the efficacy of AR-12 and a new analogue AR-13 in reducing bacterial burden in CF phagocytes. METHODS: Human CF and non-CF peripheral blood monocyte-derived macrophages, neutrophils, and nasal epithelial cells were exposed to CF bacterial strains in conjunction with treatment with antibiotics and/or AR compounds. RESULTS: AR-13 and not AR-12 had growth inhibition on B. cenocepacia and methicillin-resistantStaphylococcus aureus (MRSA) in media alone. There was a 99% reduction in MRSA in CF macrophages, 71% reduction in Pseudomonas aeruginosa in CF neutrophils, and 70% reduction in non-CF neutrophils using AR-13. Conversely, there was no reduction in B. cenocepacia in infected CF and non-CF macrophages using AR-13 alone, but AR-13 and antibiotics synergistically reduced B. cenocepacia in CF macrophages. AR-13 improved autophagy in CF macrophages and CF patient-derived epithelial cells, and increased CFTR protein expression and channel function in CF epithelial cells. CONCLUSIONS: The novel AR-12 analogue AR-13, in combination with antibiotics, reduced antibiotic-resistant bacterial burden in CF phagocytes, which correlated with increased autophagy and CFTR expression. AR-13 is a novel therapeutic for patients infected with B. cenocepacia and other resistant organisms that lack effective therapies.


Assuntos
Carga Bacteriana/efeitos dos fármacos , Burkholderia cenocepacia/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Fibrose Cística/patologia , Fagócitos/efeitos dos fármacos , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Autofagia/efeitos dos fármacos , Técnicas de Cultura de Células , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana , Humanos
15.
Stem Cells ; 36(12): 1905-1916, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30171668

RESUMO

The wingless/integrase-1 (WNT)/ß-catenin signaling pathway is active in several chronic lung diseases including idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease. Although this WNT/ß-catenin pathway activity is associated with an increase in mucus cell frequency and a decrease in ciliated cell frequency, a cause and consequence relationship between signaling and cell frequency has not been established. We previously demonstrated that genetic stabilization of ß-catenin inhibited differentiation of mouse bronchiolar tissue stem cells (TSC). This study determined the effect of ß-catenin and its co-factors P300 (E1A-binding protein, 300 kDa) and cAMP response element binding (CREB)-binding protein (CBP) on human bronchial epithelial TSC differentiation to mucus and ciliated cells. We developed a modified air-liquid interface (ALI) culture system in which mucus and ciliated cell frequency is similar. These cultures were treated with the ß-catenin agonist CHIR99021 (CHIR) and antagonists to ß-catenin (XAV939), P300 (IQ1), and CBP (ICG001). We report that human TSC differentiation to mucus and ciliated cells can be divided into two stages, specification and commitment. CHIR treatment inhibited mucus and ciliated cell commitment while XAV939 treatment demonstrated that ß-catenin was necessary for mucus and ciliated cell specification. Additional studies demonstrate that a ß-catenin/P300 complex promotes mucus cell specification and that ß-catenin interacts with either P300 or CBP to inhibit ciliated cell commitment. These data indicate that activation of ß-catenin-dependent signaling in chronic lung disease leads to changes in mucus and ciliated cell frequency and that P300 and CBP tune the ß-catenin signal to favor mucus cell differentiation. Stem Cells 2018;36:1905-12.


Assuntos
Proteína p300 Associada a E1A/metabolismo , Pneumopatias/metabolismo , Fragmentos de Peptídeos/metabolismo , Mucosa Respiratória/citologia , Sialoglicoproteínas/metabolismo , Células-Tronco/citologia , beta Catenina/metabolismo , Adolescente , Adulto , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Brônquios/citologia , Brônquios/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Doença Crônica , Proteína p300 Associada a E1A/antagonistas & inibidores , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Pneumopatias/patologia , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Fragmentos de Peptídeos/antagonistas & inibidores , Piridinas/farmacologia , Pirimidinas/farmacologia , Pirimidinonas/farmacologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Sialoglicoproteínas/antagonistas & inibidores , Células-Tronco/metabolismo , Células-Tronco/patologia , Adulto Jovem , beta Catenina/agonistas , beta Catenina/antagonistas & inibidores
16.
Int J Pediatr Otorhinolaryngol ; 112: 163-168, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30055727

RESUMO

INTRODUCTION: Congenital or acquired tracheal lesions alter airway epithelial structure and can lead to long-segment tracheal defects. Tissue engineered tracheal grafts (TETG) have the potential to cure such defects; however, clinical applications have been plagued with numerous complications including delayed graft epithelialization. The knowledge that epithelial cells migrate from native tissue to the TETG raises the possibility that TETG performance can be improved by increasing the rate of epithelialization. OBJECTIVES: We developed a model that can be used quantify epithelial migration in clinically-relevant conditions. METHODS: Existing histological analyses determined the differentiation status of the normal and injured human tracheal epithelium and were used to identify in vitro culture conditions that mimic these parameters. The classical scratch assay was adapted to permit analysis of migratory velocity as a function of differentiation status. Migration of undifferentiated (UD), partially-differentiated (PD), and well-differentiated (WD) epithelia was quantified. RESULTS: The normal and injured epithelium can be modeled using human cells that are cultured using a modified air-liquid-interface culture system. PD cell cultures are similar to the remodeled epithelium; whereas; WD cultures are similar to the normal epithelium. Preliminary results indicate that PD cells migrate more rapidly than WD cells and that PD and WD cells migrate more rapidly than UD cells. CONCLUSION: Pending verification of these results, we suggest that epithelial migration is significantly altered by differentiation status. Thus, efforts to improve TETG epithelialization should use model systems that faithfully-represent the differentiation state of the native tissue.


Assuntos
Diferenciação Celular , Movimento Celular , Células Epiteliais/fisiologia , Traqueia/fisiologia , Cicatrização/fisiologia , Adolescente , Adulto , Animais , Células Cultivadas , Criança , Pré-Escolar , Epitélio/fisiologia , Feminino , Humanos , Lactente , Masculino , Engenharia Tecidual , Adulto Jovem
17.
Am J Respir Cell Mol Biol ; 56(1): 1-10, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27632244

RESUMO

Cell therapy has the potential to cure disease through replacement of malfunctioning cells. Although the tissue stem cell (TSC) is thought to be the optimal therapeutic cell, transplantation of TSC/progenitor cell mixtures has saved lives. We previously purified the mouse tracheobronchial epithelial TSCs and reported that in vitro amplification generated numerous TSCs. However, these cultures also contained TSC-derived progenitor cells and TSC repurification by flow cytometry compromised TSC self-renewal. These limitations prompted us to determine if a TSC/progenitor cell mixture would repopulate the injured airway epithelium. We developed a cell transplantation protocol and demonstrate that transplanted mouse and human tracheobronchial epithelial TSC/progenitor cell mixtures are 20-25% of airway epithelial cells, actively contribute to epithelial repair, and persist for at least 43 days. At 2 weeks after transplantation, TSCs/progenitor cells differentiated into the three major epithelial cell types: basal, secretory, and ciliated. We conclude that cell therapy that uses adult tracheobronchial TSCs/progenitor cells is an effective therapeutic option.


Assuntos
Células Epiteliais/citologia , Pulmão/citologia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Epitélio/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Naftalenos , Ratos
18.
Lung ; 194(4): 547-53, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27272653

RESUMO

INTRODUCTION: Donor PaO2 levels are used for assessing organs for lung transplantation (LTx), but survival implications of PaO2 levels in adult cystic fibrosis (CF) patients receiving LTx are unclear. METHODS: UNOS registry data spanning 2005-2013 were used to test for associations of donor PaO2 with patient survival and bronchiolitis obliterans syndrome (BOS) in adult (age ≥ 18 years) first-time LTx recipients diagnosed with CF. RESULTS: The analysis included 1587 patients, of whom 1420 had complete data for multivariable Cox models. No statistically significant differences among donor PaO2 categories of ≤200, 201-300, 301-400, or >400 mmHg were found in univariate survival analysis (log-rank test p = 0.290). BOS onset did not significantly differ across donor PaO2 categories (Chi-square p = 0.480). Multivariable Cox models of patient survival supported the lack of difference across donor PaO2 categories. Interaction analysis found a modest difference in survival between the two top categories of donor PaO2 when examining patients with body mass index (BMI) in the lowest decile (≤16.5 kg/m(2)). CONCLUSIONS: Donor PaO2 was not associated with survival or BOS onset in adult CF patients undergoing LTx. Notwithstanding statistically significant interactions between donor PaO2 and BMI, there was no evidence of post-LTx survival risk associated with donor PaO2 below conventional thresholds in any subgroup of adults with CF.


Assuntos
Bronquiolite Obliterante/epidemiologia , Fibrose Cística/cirurgia , Transplante de Pulmão , Oxigênio/sangue , Doadores de Tecidos , Adulto , Índice de Massa Corporal , Bronquiolite Obliterante/etiologia , Feminino , Humanos , Incidência , Estimativa de Kaplan-Meier , Transplante de Pulmão/efeitos adversos , Masculino , Pressão Parcial , Modelos de Riscos Proporcionais , Sistema de Registros , Taxa de Sobrevida , Síndrome , Resultado do Tratamento , Estados Unidos/epidemiologia , Adulto Jovem
19.
Am J Respir Cell Mol Biol ; 55(3): 323-36, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27144410

RESUMO

The application of conditional reprogramming culture (CRC) methods to nasal airway epithelial cells would allow more wide-spread incorporation of primary airway epithelial culture models into complex lung disease research. In this study, we adapted the CRC method to nasal airway epithelial cells, investigated the growth advantages afforded by this technique over standard culture methods, and determined the cellular and molecular basis of CRC cell culture effects. We found that the CRC method allowed the production of 7.1 × 10(10) cells after 4 passages, approximately 379 times more cells than were generated by the standard bronchial epithelial growth media (BEGM) method. These nasal airway epithelial cells expressed normal basal cell markers and could be induced to form a mucociliary epithelium. Progenitor cell frequency was significantly higher using the CRC method in comparison to the standard culture method, and progenitor cell maintenance was dependent on addition of the Rho-kinase inhibitor Y-27632. Whole-transcriptome sequencing analysis demonstrated widespread gene expression changes in Y-27632-treated basal cells. We found that Y-27632 treatment altered expression of genes fundamental to the formation of the basal cell cytoskeleton, cell-cell junctions, and cell-extracellular matrix (ECM) interactions. Importantly, we found that Y-27632 treatment up-regulated expression of unique basal cell intermediate filament and desmosomal genes. Conversely, Y-27632 down-regulated multiple families of protease/antiprotease genes involved in ECM remodeling. We conclude that Y-27632 fundamentally alters cell-cell and cell-ECM interactions, which preserves basal progenitor cells and allows greater cell amplification.


Assuntos
Amidas/farmacologia , Pulmão/citologia , Piridinas/farmacologia , Células-Tronco/citologia , Transcriptoma/genética , Animais , Brônquios/citologia , Comunicação Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Junções Célula-Matriz/efeitos dos fármacos , Junções Célula-Matriz/metabolismo , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Células Clonais , Meios de Cultura/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Células NIH 3T3 , Nariz/citologia , Transcriptoma/efeitos dos fármacos
20.
Tissue Eng Part A ; 21(1-2): 75-84, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24980864

RESUMO

Tracheal loss is a source of significant morbidity for affected patients with no acceptable solution. Interest in engineering tracheal transplants has created a demand for small animal models of orthotopic tracheal transplantation. Here, we examine the use of a decellularized graft in a murine model of tracheal replacement. Fresh or decellularized tracheas harvested from age-matched female donor C57BL/6 mice were transplanted into syngeneic recipients. Tracheas were decellularized using repeated washes of water, 3% Triton X-100, and 3 M NaCl under cyclic pressure changes, followed by disinfection with 0.1% peracetic acid/4% ethanol, and terminal sterilization by gamma irradiation. Tracheas were explanted for immunolabeling at 1, 4, and 8 weeks following surgery. Video microscopy and computed tomography were performed to assess function and structure. Decellularized grafts supported complete reepithelialization by 8 weeks and motile cilia were observed. Cartilaginous portions of the trachea were maintained in mice receiving fresh transplants, but repopulation of the cartilage was not seen in mice receiving decellularized transplants. We observed superior postsurgical survival, weight gain, and ciliary function in mice receiving fresh transplants compared with those receiving decellularized transplants. The murine orthotopic tracheal transplant provides an appropriate model to assess the repopulation and functional regeneration of decellularized tracheal grafts.


Assuntos
Diferenciação Celular , Movimento Celular , Células Epiteliais/citologia , Matriz Extracelular/transplante , Traqueia/citologia , Traqueia/transplante , Animais , Cílios/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Procedimentos de Cirurgia Plástica , Alicerces Teciduais/química , Traqueia/diagnóstico por imagem , Traqueia/cirurgia , Vácuo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA