Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods ; 226: 138-150, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670415

RESUMO

In the era of precision medicine, accurate disease phenotype prediction for heterogeneous diseases, such as cancer, is emerging due to advanced technologies that link genotypes and phenotypes. However, it is difficult to integrate different types of biological data because they are so varied. In this study, we focused on predicting the traits of a blood cancer called Acute Myeloid Leukemia (AML) by combining different kinds of biological data. We used a recently developed method called Omics Generative Adversarial Network (GAN) to better classify cancer outcomes. The primary advantages of a GAN include its ability to create synthetic data that is nearly indistinguishable from real data, its high flexibility, and its wide range of applications, including multi-omics data analysis. In addition, the GAN was effective at combining two types of biological data. We created synthetic datasets for gene activity and DNA methylation. Our method was more accurate in predicting disease traits than using the original data alone. The experimental results provided evidence that the creation of synthetic data through interacting multi-omics data analysis using GANs improves the overall prediction quality. Furthermore, we identified the top-ranked significant genes through statistical methods and pinpointed potential candidate drug agents through in-silico studies. The proposed drugs, also supported by other independent studies, might play a crucial role in the treatment of AML cancer. The code is available on GitHub; https://github.com/SabrinAfroz/omicsGAN_codes?fbclid=IwAR1-/stuffmlE0hyWgSu2wlXo6dYlKUei3faLdlvpxTOOUPVlmYCloXf4Uk9ejK4I.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Genômica/métodos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Biologia Computacional/métodos , Redes Neurais de Computação , Medicina de Precisão/métodos , Multiômica
2.
Drug Des Devel Ther ; 17: 3661-3684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084128

RESUMO

Background: Metformin hydrochloride (HCl) microspheres and nanoparticles were formulated to enhance bioavailability and minimize side effects through sustained action and optimized drug-release characteristics. Initially, the same formulation design with different ratios of metformin HCl and Eudragit RSPO was used to formulate four batches of microspheres and nanoparticles using solvent evaporation and nanoprecipitation methods, respectively. Methods: The produced formulations were evaluated based on particle size and shape (particle size distribution (PSD), scanning electron microscope (SEM)), incompatibility (differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR)), drug release pattern, permeation behavior, in vivo hypoglycemic effects, and in vitro anticancer potential. Results: Compatibility studies concluded that there was minimal interaction between metformin HCl and the polymer, whereas SEM images revealed smoother, more spherical nanoparticles than microspheres. Drug release from the formulations was primarily controlled by the non-Fickian diffusion process, except for A1 and A4 by Fickian, and B3 by Super case II. Korsmeyer-Peppas was the best-fit model for the maximum formulations. The best formulations of microspheres and nanoparticles, based on greater drug release, drug entrapment, and compatibility characteristics, were attributed to the study of drug permeation by non-everted intestinal sacs, in vivo anti-hyperglycemic activity, and in vitro anticancer activity. Conclusion: This study suggests that the proposed metformin HCl formulation can dramatically reduce hyperglycemic conditions and may also have anticancer potential.


Assuntos
Metformina , Nanopartículas , Metformina/farmacologia , Metformina/química , Química Farmacêutica/métodos , Preparações de Ação Retardada , Microesferas , Projetos de Pesquisa , Hipoglicemiantes/farmacologia , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Varredura Diferencial de Calorimetria
3.
PLoS One ; 18(11): e0288208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943796

RESUMO

The most frequently prescribed first-line treatment for type II diabetes mellitus is metformin. Recent reports asserted that this diabetes medication can also shield users from cancer. Metformin induces cell cycle arrest in cancer cells. However, the exact mechanism by which this occurs in the cancer system is yet to be elucidated. Here, we investigated the impact of metformin on cell cycle arrest in cancer cells utilizing transforming growth factor (TGF)-beta pathway. TGF-ß pathway has significant effect on cell progression and growth. In order to gain an insight on the underlying molecular mechanism of metformin's effect on TGF beta receptor 1 kinase, molecular docking was performed. Metformin was predicted to interact with transforming growth factor (TGF)-beta receptor I kinase based on molecular docking and molecular dynamics simulations. Furthermore, pharmacophore was generated for metformin-TGF-ßR1 complex to hunt for novel compounds having similar pharmacophore as metformin with enhanced anti-cancer potentials. Virtual screening with 29,000 natural compounds from NPASS database was conducted separately for the generated pharmacophores in Ligandscout® software. Pharmacophore mapping showed 60 lead compounds for metformin-TGF-ßR1 complex. Molecular docking, molecular dynamics simulation for 100 ns and ADMET analysis were performed on these compounds. Compounds with CID 72473, 10316977 and 45140078 showed promising binding affinities and formed stable complexes during dynamics simulation with aforementioned protein and thus have potentiality to be developed into anti-cancer medicaments.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Neoplasias , Humanos , Metformina/farmacologia , Simulação de Acoplamento Molecular , Farmacóforo , Neoplasias/tratamento farmacológico , Simulação de Dinâmica Molecular , Fator de Crescimento Transformador beta , Ligantes
4.
Front Mol Biosci ; 10: 1249019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469706

RESUMO

[This corrects the article DOI: 10.3389/fmolb.2022.857320.].

5.
Cancers (Basel) ; 15(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36900162

RESUMO

Colorectal cancer (CRC) is one of the most common cancers with a high mortality rate. Early diagnosis and therapies for CRC may reduce the mortality rate. However, so far, no researchers have yet investigated core genes (CGs) rigorously for early diagnosis, prognosis, and therapies of CRC. Therefore, an attempt was made in this study to explore CRC-related CGs for early diagnosis, prognosis, and therapies. At first, we identified 252 common differentially expressed genes (cDEGs) between CRC and control samples based on three gene-expression datasets. Then, we identified ten cDEGs (AURKA, TOP2A, CDK1, PTTG1, CDKN3, CDC20, MAD2L1, CKS2, MELK, and TPX2) as the CGs, highlighting their mechanisms in CRC progression. The enrichment analysis of CGs with GO terms and KEGG pathways revealed some crucial biological processes, molecular functions, and signaling pathways that are associated with CRC progression. The survival probability curves and box-plot analyses with the expressions of CGs in different stages of CRC indicated their strong prognostic performance from the earlier stage of the disease. Then, we detected CGs-guided seven candidate drugs (Manzamine A, Cardidigin, Staurosporine, Sitosterol, Benzo[a]pyrene, Nocardiopsis sp., and Riccardin D) by molecular docking. Finally, the binding stability of four top-ranked complexes (TPX2 vs. Manzamine A, CDC20 vs. Cardidigin, MELK vs. Staurosporine, and CDK1 vs. Riccardin D) was investigated by using 100 ns molecular dynamics simulation studies, and their stable performance was observed. Therefore, the output of this study may play a vital role in developing a proper treatment plan at the earlier stages of CRC.

6.
Sci Rep ; 13(1): 4685, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949176

RESUMO

Some recent studies showed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and idiopathic pulmonary fibrosis (IPF) disease might stimulate each other through the shared genes. Therefore, in this study, an attempt was made to explore common genomic biomarkers for SARS-CoV-2 infections and IPF disease highlighting their functions, pathways, regulators and associated drug molecules. At first, we identified 32 statistically significant common differentially expressed genes (cDEGs) between disease (SARS-CoV-2 and IPF) and control samples of RNA-Seq profiles by using a statistical r-package (edgeR). Then we detected 10 cDEGs (CXCR4, TNFAIP3, VCAM1, NLRP3, TNFAIP6, SELE, MX2, IRF4, UBD and CH25H) out of 32 as the common hub genes (cHubGs) by the protein-protein interaction (PPI) network analysis. The cHubGs regulatory network analysis detected few key TFs-proteins and miRNAs as the transcriptional and post-transcriptional regulators of cHubGs. The cDEGs-set enrichment analysis identified some crucial SARS-CoV-2 and IPF causing common molecular mechanisms including biological processes, molecular functions, cellular components and signaling pathways. Then, we suggested the cHubGs-guided top-ranked 10 candidate drug molecules (Tegobuvir, Nilotinib, Digoxin, Proscillaridin, Simeprevir, Sorafenib, Torin 2, Rapamycin, Vancomycin and Hesperidin) for the treatment against SARS-CoV-2 infections with IFP diseases as comorbidity. Finally, we investigated the resistance performance of our proposed drug molecules compare to the already published molecules, against the state-of-the-art alternatives publicly available top-ranked independent receptors by molecular docking analysis. Molecular docking results suggested that our proposed drug molecules would be more effective compare to the already published drug molecules. Thus, the findings of this study might be played a vital role for diagnosis and therapies of SARS-CoV-2 infections with IPF disease as comorbidity risk.


Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Humanos , COVID-19/genética , SARS-CoV-2/genética , Simulação de Acoplamento Molecular , Reposicionamento de Medicamentos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Biologia Computacional
8.
Curr Cancer Drug Targets ; 23(7): 547-563, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36786134

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death globally. The mechanisms underlying the development of HCC are mostly unknown till now. OBJECTIVE: The main goal of this study was to identify potential drug target proteins and agents for the treatment of HCC. METHODS: The publicly available three independent mRNA expression profile datasets were downloaded from the NCBI-GEO database to explore common differentially expressed genes (cDEGs) between HCC and control samples using the Statistical LIMMA approach. Hub-cDEGs as drug targets highlighting their functions, pathways, and regulators were identified by using integrated bioinformatics tools and databases. Finally, Hub-cDEGs-guided top-ranked drug agents were identified by molecular docking study for HCC. RESULTS: We identified 160 common DEGs (cDEGs) from three independent mRNA expression datasets in which ten cDEGs (CDKN3, TK1, NCAPG, CDCA5, RACGAP1, AURKA, PRC1, UBE2T, MELK, and ASPM) were selected as Hub-cDEGs. The GO functional and KEGG pathway enrichment analysis of Hub-cDEGs revealed some crucial cancer-stimulating biological processes, molecular functions, cellular components, and signaling pathways. The interaction network analysis identified three TF proteins and five miRNAs as the key transcriptional and post-transcriptional regulators of HubcDEGs. Then, we detected the proposed Hub-cDEGs guided top-ranked three anti-HCC drug molecules (Dactinomycin, Vincristine, Sirolimus) that were also highly supported by the already published top-ranked HCC-causing Hub-DEGs mediated receptors. CONCLUSION: The findings of this study would be useful resources for diagnosis, prognosis, and therapies of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Simulação de Acoplamento Molecular , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Biologia Computacional , RNA Mensageiro , Proteínas Serina-Treonina Quinases/genética , Enzimas de Conjugação de Ubiquitina/genética
9.
Comput Biol Med ; 152: 106411, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502691

RESUMO

Pancreatic cancer (PC) is one of the leading causes of cancer-related death globally. So, identification of potential molecular signatures is required for diagnosis, prognosis, and therapies of PC. In this study, we detected 71 common differentially expressed genes (cDEGs) between PC and control samples from four microarray gene-expression datasets (GSE15471, GSE16515, GSE71989, and GSE22780) by using robust statistical and machine learning approaches, since microarray gene-expression datasets are often contaminated by outliers due to several steps involved in the data generating processes. Then we detected 8 cDEGs (ADAM10, COL1A2, FN1, P4HB, ITGB1, ITGB5, ANXA2, and MYOF) as the PC-causing key genes (KGs) by the protein-protein interaction (PPI) network analysis. We validated the expression patterns of KGs between case and control samples by box plot analysis with the TCGA and GTEx databases. The proposed KGs showed high prognostic power with the random forest (RF) based prediction model and Kaplan-Meier-based survival probability curve. The KGs regulatory network analysis detected few transcriptional and post-transcriptional regulators for KGs. The cDEGs-set enrichment analysis revealed some crucial PC-causing molecular functions, biological processes, cellular components, and pathways that are associated with KGs. Finally, we suggested KGs-guided five repurposable drug molecules (Linsitinib, CX5461, Irinotecan, Timosaponin AIII, and Olaparib) and a new molecule (NVP-BHG712) against PC by molecular docking. The stability of the top three protein-ligand complexes was confirmed by molecular dynamic (MD) simulation studies. The cross-validation and some literature reviews also supported our findings. Therefore, the finding of this study might be useful resources to the researchers and medical doctors for diagnosis, prognosis and therapies of PC by the wet-lab validation.


Assuntos
Neoplasias Pancreáticas , Transcriptoma , Humanos , Perfilação da Expressão Gênica , Simulação de Acoplamento Molecular , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Biomarcadores Tumorais/genética , Genômica , Regulação Neoplásica da Expressão Gênica , Biologia Computacional , Neoplasias Pancreáticas
10.
Discov Oncol ; 13(1): 79, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35994213

RESUMO

Cervical cancer (CC) is considered as the fourth most common women cancer globally.that shows malignant features of local infiltration and invasion into adjacent organs and tissues. There are several individual studies in the literature that explored CC-causing hub-genes (HubGs), however, we observed that their results are not so consistent. Therefore, the main objective of this study was to explore hub of the HubGs (hHubGs) that might be more representative CC-causing HubGs compare to the single study based HubGs. We reviewed 52 published articles and found 255 HubGs/studied-genes in total. Among them, we selected 10 HubGs (CDK1, CDK2, CHEK1, MKI67, TOP2A, BRCA1, PLK1, CCNA2, CCNB1, TYMS) as the hHubGs by the protein-protein interaction (PPI) network analysis. Then, we validated their differential expression patterns between CC and control samples through the GPEA database. The enrichment analysis of HubGs revealed some crucial CC-causing biological processes (BPs), molecular functions (MFs) and cellular components (CCs) by involving hHubGs. The gene regulatory network (GRN) analysis identified four TFs proteins and three miRNAs as the key transcriptional and post-transcriptional regulators of hHubGs. Then, we identified hHubGs-guided top-ranked FDA-approved 10 candidate drugs and validated them against the state-of-the-arts independent receptors by molecular docking analysis. Finally, we investigated the binding stability of the top-ranked three candidate drugs (Docetaxel, Temsirolimus, Paclitaxel) by using 100 ns MD-based MM-PBSA simulations and observed their stable performance. Therefore the finding of this study might be the useful resources for CC diagnosis and therapies.

11.
Vaccines (Basel) ; 10(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35632527

RESUMO

Non-small-cell lung cancer (NSCLC) is considered as one of the malignant cancers that causes premature death. The present study aimed to identify a few potential novel genes highlighting their functions, pathways, and regulators for diagnosis, prognosis, and therapies of NSCLC by using the integrated bioinformatics approaches. At first, we picked out 1943 DEGs between NSCLC and control samples by using the statistical LIMMA approach. Then we selected 11 DEGs (CDK1, EGFR, FYN, UBC, MYC, CCNB1, FOS, RHOB, CDC6, CDC20, and CHEK1) as the hub-DEGs (potential key genes) by the protein-protein interaction network analysis of DEGs. The DEGs and hub-DEGs regulatory network analysis commonly revealed four transcription factors (FOXC1, GATA2, YY1, and NFIC) and five miRNAs (miR-335-5p, miR-26b-5p, miR-92a-3p, miR-155-5p, and miR-16-5p) as the key transcriptional and post-transcriptional regulators of DEGs as well as hub-DEGs. We also disclosed the pathogenetic processes of NSCLC by investigating the biological processes, molecular function, cellular components, and KEGG pathways of DEGs. The multivariate survival probability curves based on the expression of hub-DEGs in the SurvExpress web-tool and database showed the significant differences between the low- and high-risk groups, which indicates strong prognostic power of hub-DEGs. Then, we explored top-ranked 5-hub-DEGs-guided repurposable drugs based on the Connectivity Map (CMap) database. Out of the selected drugs, we validated six FDA-approved launched drugs (Dinaciclib, Afatinib, Icotinib, Bosutinib, Dasatinib, and TWS-119) by molecular docking interaction analysis with the respective target proteins for the treatment against NSCLC. The detected therapeutic targets and repurposable drugs require further attention by experimental studies to establish them as potential biomarkers for precision medicine in NSCLC treatment.

12.
PLoS One ; 17(5): e0268967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617355

RESUMO

Integrated bioinformatics and statistical approaches are now playing the vital role in identifying potential molecular biomarkers more accurately in presence of huge number of alternatives for disease diagnosis, prognosis and therapies by reducing time and cost compared to the wet-lab based experimental procedures. Breast cancer (BC) is one of the leading causes of cancer related deaths for women worldwide. Several dry-lab and wet-lab based studies have identified different sets of molecular biomarkers for BC. But they did not compare their results to each other so much either computationally or experimentally. In this study, an attempt was made to propose a set of molecular biomarkers that might be more effective for BC diagnosis, prognosis and therapies, by using the integrated bioinformatics and statistical approaches. At first, we identified 190 differentially expressed genes (DEGs) between BC and control samples by using the statistical LIMMA approach. Then we identified 13 DEGs (AKR1C1, IRF9, OAS1, OAS3, SLCO2A1, NT5E, NQO1, ANGPT1, FN1, ATF6B, HPGD, BCL11A, and TP53INP1) as the key genes (KGs) by protein-protein interaction (PPI) network analysis. Then we investigated the pathogenetic processes of DEGs highlighting KGs by GO terms and KEGG pathway enrichment analysis. Moreover, we disclosed the transcriptional and post-transcriptional regulatory factors of KGs by their interaction network analysis with the transcription factors (TFs) and micro-RNAs. Both supervised and unsupervised learning's including multivariate survival analysis results confirmed the strong prognostic power of the proposed KGs. Finally, we suggested KGs-guided computationally more effective seven candidate drugs (NVP-BHG712, Nilotinib, GSK2126458, YM201636, TG-02, CX-5461, AP-24534) compared to other published drugs by cross-validation with the state-of-the-art alternatives top-ranked independent receptor proteins. Thus, our findings might be played a vital role in breast cancer diagnosis, prognosis and therapies.


Assuntos
Neoplasias da Mama , Transportadores de Ânions Orgânicos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Proteínas de Transporte/metabolismo , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Choque Térmico/metabolismo , Humanos , Transportadores de Ânions Orgânicos/genética , Prognóstico , Mapas de Interação de Proteínas/genética
13.
Front Mol Biosci ; 9: 857320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359600

RESUMO

Gastric cancer (GC) is one of the most common malignant tumors and ranks third in cancer mortality globally. Although, a lot of advancements have been made in diagnosis and treatment of gastric cancer, there is still lack of ideal biomarker for the diagnosis and treatment of gastric cancer. Due to the poor prognosis, the survival rate is not improved much. Circular RNAs (circRNAs) are single-stranded RNAs with a covalently closed loop structure that don't have the 5'-3' polarity and a 3' polyA tail. Because of their circular structure, circRNAs are more stable than linear RNAs. Previous studies have found that circRNAs are involved in several biological processes like cell cycle, proliferation, apoptosis, autophagy, migration and invasion in different cancers, and participate in some molecular mechanisms including sponging microRNAs (miRNAs), protein translation and binding to RNA-binding proteins. Several studies have reported that circRNAs play crucial role in the occurrence and development of different types of cancers. Although, some studies have reported several circRNAs in gastric cancer, more studies are needed in searching new biomarkers for gastric cancer diagnosis and treatment. Here, we investigated potential circRNA biomarkers for GC using next-generation sequencing (NGS) data collected from 5 paired GC samples. A total of 45,783 circRNAs were identified in all samples and among them 478 were differentially expressed (DE). The gene ontology (GO) analysis of the host genes of the DE circRNAs showed that some genes were enriched in several important biological processes, molecular functions and cellular components. The Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis revealed that some host genes were enriched in several GC related pathways. The circRNA-miRNA-gene interaction network analysis showed that two circRNAs circCEACAM5 and circCOL1A1 were interacted with gastric cancer related miRNAs, and their host genes were also the important therapeutic and prognostic biomarkers for GC. The experimental results also validated that these two circRNAs were DE in GC compared to adjacent normal tissues. Overall, our findings suggest that these two circRNAs circCEACAM5 and circCOL1A1 might be the potential biomarkers for the diagnosis and treatment of GC.

14.
PLoS One ; 17(4): e0266124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35390032

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is one of the most severe global pandemic due to its high pathogenicity and death rate starting from the end of 2019. Though there are some vaccines available against SAER-CoV-2 infections, we are worried about their effectiveness, due to its unstable sequence patterns. Therefore, beside vaccines, globally effective supporting drugs are also required for the treatment against SARS-CoV-2 infection. To explore commonly effective repurposable drugs for the treatment against different variants of coronavirus infections, in this article, an attempt was made to explore host genomic biomarkers guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches. At first, we identified 138 differentially expressed genes (DEGs) between SARS-CoV-1 infected and control samples by analyzing high throughput gene-expression profiles to select drug target key receptors. Then we identified top-ranked 11 key DEGs (SMAD4, GSK3B, SIRT1, ATM, RIPK1, PRKACB, MED17, CCT2, BIRC3, ETS1 and TXN) as hub genes (HubGs) by protein-protein interaction (PPI) network analysis of DEGs highlighting their functions, pathways, regulators and linkage with other disease risks that may influence SARS-CoV-1 infections. The DEGs-set enrichment analysis significantly detected some crucial biological processes (immune response, regulation of angiogenesis, apoptotic process, cytokine production and programmed cell death, response to hypoxia and oxidative stress), molecular functions (transcription factor binding and oxidoreductase activity) and pathways (transcriptional mis-regulation in cancer, pathways in cancer, chemokine signaling pathway) that are associated with SARS-CoV-1 infections as well as SARS-CoV-2 infections by involving HubGs. The gene regulatory network (GRN) analysis detected some transcription factors (FOXC1, GATA2, YY1, FOXL1, TP53 and SRF) and micro-RNAs (hsa-mir-92a-3p, hsa-mir-155-5p, hsa-mir-106b-5p, hsa-mir-34a-5p and hsa-mir-19b-3p) as the key transcriptional and post- transcriptional regulators of HubGs, respectively. We also detected some chemicals (Valproic Acid, Cyclosporine, Copper Sulfate and arsenic trioxide) that may regulates HubGs. The disease-HubGs interaction analysis showed that our predicted HubGs are also associated with several other diseases including different types of lung diseases. Then we considered 11 HubGs mediated proteins and their regulatory 6 key TFs proteins as the drug target proteins (receptors) and performed their docking analysis with the SARS-CoV-2 3CL protease-guided top listed 90 anti-viral drugs out of 3410. We found Rapamycin, Tacrolimus, Torin-2, Radotinib, Danoprevir, Ivermectin and Daclatasvir as the top-ranked 7 candidate-drugs with respect to our proposed target proteins for the treatment against SARS-CoV-1 infections. Then, we validated these 7 candidate-drugs against the already published top-ranked 11 target proteins associated with SARS-CoV-2 infections by molecular docking simulation and found their significant binding affinity scores with our proposed candidate-drugs. Finally, we validated all of our findings by the literature review. Therefore, the proposed candidate-drugs might play a vital role for the treatment against different variants of SARS-CoV-2 infections with comorbidities, since the proposed HubGs are also associated with several comorbidities.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Biologia Computacional , Reposicionamento de Medicamentos , Síndrome Respiratória Aguda Grave , Antivirais/farmacologia , Humanos , MicroRNAs/genética , Simulação de Acoplamento Molecular , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , SARS-CoV-2/genética , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Fatores de Transcrição/genética , Transcriptoma
15.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409328

RESUMO

Bioinformatics analysis has been playing a vital role in identifying potential genomic biomarkers more accurately from an enormous number of candidates by reducing time and cost compared to the wet-lab-based experimental procedures for disease diagnosis, prognosis, and therapies. Cervical cancer (CC) is one of the most malignant diseases seen in women worldwide. This study aimed at identifying potential key genes (KGs), highlighting their functions, signaling pathways, and candidate drugs for CC diagnosis and targeting therapies. Four publicly available microarray datasets of CC were analyzed for identifying differentially expressed genes (DEGs) by the LIMMA approach through GEO2R online tool. We identified 116 common DEGs (cDEGs) that were utilized to identify seven KGs (AURKA, BRCA1, CCNB1, CDK1, MCM2, NCAPG2, and TOP2A) by the protein-protein interaction (PPI) network analysis. The GO functional and KEGG pathway enrichment analyses of KGs revealed some important functions and signaling pathways that were significantly associated with CC infections. The interaction network analysis identified four TFs proteins and two miRNAs as the key transcriptional and post-transcriptional regulators of KGs. Considering seven KGs-based proteins, four key TFs proteins, and already published top-ranked seven KGs-based proteins (where five KGs were common with our proposed seven KGs) as drug target receptors, we performed their docking analysis with the 80 meta-drug agents that were already published by different reputed journals as CC drugs. We found Paclitaxel, Vinorelbine, Vincristine, Docetaxel, Everolimus, Temsirolimus, and Cabazitaxel as the top-ranked seven candidate drugs. Finally, we investigated the binding stability of the top-ranked three drugs (Paclitaxel, Vincristine, Vinorelbine) by using 100 ns MD-based MM-PBSA simulations with the three top-ranked proposed receptors (AURKA, CDK1, TOP2A) and observed their stable performance. Therefore, the proposed drugs might play a vital role in the treatment against CC.


Assuntos
Biologia Computacional , Neoplasias do Colo do Útero , Aurora Quinase A/genética , Biomarcadores Tumorais/genética , Proteínas Cromossômicas não Histona/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Detecção Precoce de Câncer/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Paclitaxel , RNA Mensageiro , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Vincristina , Vinorelbina
16.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830241

RESUMO

Breast cancer (BC) is the most frequent malignancy identified in adult females, resulting in enormous financial losses worldwide. Owing to the heterogeneity as well as various molecular subtypes, the molecular pathways underlying carcinogenesis in various forms of BC are distinct. Therefore, the advancement of alternative therapy is required to combat the ailment. Recent analyses propose that long non-coding RNAs (lncRNAs) perform an essential function in controlling immune response, and therefore, may provide essential information about the disorder. However, their function in patients with triple-negative BC (TNBC) has not been explored in detail. Here, we analyzed the changes in the genomic expression of messenger RNA (mRNA) and lncRNA in standard control in response to cancer metastasis using publicly available single-cell RNA-Seq data. We identified a total of 197 potentially novel lncRNAs in TNBC patients of which 86 were differentially upregulated and 111 were differentially downregulated. In addition, among the 909 candidate lncRNA transcripts, 19 were significantly differentially expressed (DE) of which three were upregulated and 16 were downregulated. On the other hand, 1901 mRNA transcripts were significantly DE of which 1110 were upregulated and 791 were downregulated by TNBCs subtypes. The Gene Ontology (GO) analyses showed that some of the host genes were enriched in various biological, molecular, and cellular functions. The Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that some of the genes were involved in only one pathway of prostate cancer. The lncRNA-miRNA-gene network analysis showed that the lncRNAs TCONS_00076394 and TCONS_00051377 interacted with breast cancer-related micro RNAs (miRNAs) and the host genes of these lncRNAs were also functionally related to breast cancer. Thus, this study provides novel lncRNAs as potential biomarkers for the therapeutic intervention of this cancer subtype.


Assuntos
MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Neoplásico/genética , Neoplasias de Mama Triplo Negativas/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , MicroRNAs/classificação , MicroRNAs/metabolismo , Anotação de Sequência Molecular , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , RNA Mensageiro/classificação , RNA Mensageiro/metabolismo , RNA Neoplásico/classificação , RNA Neoplásico/metabolismo , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
17.
Springerplus ; 5(1): 691, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27350925

RESUMO

The aim of the current study was to formulate Fexofenadine hydrochloride loaded sustained release microspheres using HPMC K100 M CR, a release retardant hydrophilic polymer by solvent evaporation method. The effect of different drug loading on drug content, drug encapsulation efficiency and release of drug was monitored. The studies on in vitro release mechanism were performed using USP paddle method with 900 ml of phosphate buffer (pH 6.8) for 10 h at 100 rpm. The mechanism of the drug release was determined by fitting in vitro release data to various release kinetic models such as the zero order, first order, Higuchi, Hixson Crowell and Korsemeyer-Peppas model and finding R(2) values for the release profile corresponding to each model. The results confirm that the release rate of the drug from the microspheres is highly affected by the drug to polymer ratio. The study finds that Higuchi release kinetics, Korsmeyer-Peppas release kinetics and Hixson-Crowell release kinetics were the major release mechanism. The release mechanism was found to be non-Fickian with increase of polymer content. Scanning electron microscopic technique was performed to obtain the morphological changes due to different drug loading. Differential scanning calorimetry and Fourier transform infra-red spectroscopy was performed to determine any interaction of drug with the polymer. A statistically significant variation in release rate was observed for variation in the amount of HPMC K100 M CR. In the present study, a series of sustained release formulations of Fexofenadine hydrochloride were developed with different drug loading so that these formulations could further be evaluated from the in vivo studies. The formulations were found to be stable and reproducible.

18.
Pak J Pharm Sci ; 22(3): 303-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19553179

RESUMO

The purpose of the present study was to investigate the effect of channeling agent on the release profile of theophylline from Kollidon SR based matrix systems. Matrix tablets of theophylline using Kollidon SR which is plastic in nature were prepared by direct compression process. NaCl and PEG 1500 were used as channeling agents. Drug release study was evaluated for eight hours using USP 22 paddle-type dissolution apparatus using distilled water as the dissolution medium. The release mechanisms were explored and explained with zero order, Higuchi, first order and Korsmeyer equations. The release rate, extent and mechanisms were found to be governed by the type and content of the channeling agents. Increased rate and extent of the drug release were found by using higher content of channeling agent (42.49%) in the matrix due to increased porosity when compared with the formulation having no channeling agents. On the other hand decreased rate and extent of drug release were observed in the formulation having lower channeling agent content (19.76%). PEG 1500 ensures maximum release of drug from Kollidon SR than NaCl when other parameters were kept unchanged. It was found that type and amount of channeling agent significantly affect the time required for 50% of drug release (T50%), percentage drug release at 8 hours, release rate constant (K) and diffusion exponent (n). Kinetic modeling of dissolution profiles revealed drug release mechanism ranges from diffusion controlled or Fickian transport to anomalous type or non-Fickian transport, which was mainly dependent on the type and amount of channeling agents. These studies indicate that the proper balance between a matrix forming agent and a channeling agent can produce a drug dissolution profile similar to a desired dissolution profile.


Assuntos
Broncodilatadores/química , Teofilina/química , Química Farmacêutica , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Polietilenoglicóis , Povidona/química , Cloreto de Sódio , Comprimidos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA