Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Heliyon ; 10(11): e31589, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845895

RESUMO

The extracellular matrix (ECM) is a multifunctional network of macromolecules that regulate various cellular functions and physically support the tissues. Besides physiological conditions, the ECM also changes during pathological conditions such as cancer. As tumor cells proliferate, notable changes occur in the quantity and makeup of the surrounding ECM. Therefore, the role of this noncellular component of tissues in studies of tumor microenvironments should be considered. So far, many attempts have been made to create 2-dimensional (2D) or 3-dimensional (3D) models that can replicate the intricate connections within the tumor microenvironment. Decellularized tissues are proper scaffolds that imitate the complex nature of native ECM. This review aims to summarize 3D models of digestive system cancers based on decellularized ECMs. These ECM-based scaffolds will enable us to study the interactive communication between cells and their surrounding environment which brings new potential for a better understanding of the pathophysiology of cancer.

2.
J Tissue Viability ; 33(2): 332-344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594147

RESUMO

Mesenchymal stem cell-derived exosomes (MSCs-EXO) have received a lot of interest recently as a potential therapeutic tool in regenerative medicine. Extracellular vesicles (EVs) known as exosomes (EXOs) are crucial for cell-cell communication throughout a variety of activities including stress response, aging, angiogenesis, and cell differentiation. Exploration of the potential use of EXOs as essential therapeutic effectors of MSCs to encourage tissue regeneration was motivated by success in the field of regenerative medicine. EXOs have been administered to target tissues using a variety of methods, including direct, intravenous, intraperitoneal injection, oral delivery, and hydrogel-based encapsulation, in various disease models. Despite the significant advances in EXO therapy, various methods are still being researched to optimize the therapeutic applications of these nanoparticles, and it is not completely clear which approach to EXO administration will have the greatest effects. Here, we will review emerging developments in the applications of EXOs loaded into decellularized tissues as therapeutic agents for use in regenerative medicine in various tissues.


Assuntos
Exossomos , Medicina Regenerativa , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Exossomos/fisiologia , Humanos , Animais , Células-Tronco Mesenquimais/fisiologia
3.
Breast Cancer (Auckl) ; 18: 11782234241236358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476474

RESUMO

Despite recent improvements in detecting and managing breast cancer (BC), it continues to be a major worldwide health concern that annually affects millions of people. Exploring the anti-BC potentials of natural compounds has received a lot of scientific attention due to their multi-target mode of action and good safety profiles because of these unmet needs. Drugs made from herbs are secure and have a lot fewer negative effects than those made from synthetic materials. Early stage patients benefit from breast-conserving surgery, but the risk of local recurrence remains, necessitating implanted scaffolds. These scaffolds provide residual cancer cell killing and tailored drug delivery. This review looks at plant extract-infused tissue engineering scaffolds, which provide a novel approach to treating BC. By offering patient individualized, safer treatments, these scaffolds could completely change how BC is treated.

4.
Hum Cell ; 37(1): 121-138, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37878214

RESUMO

Almost all cell types, either in vivo or in vitro, create extracellular vesicles (EVs). Among them are exosomes (EXOs), i.e., tiny nanovesicles containing a lipid bilayer, proteins, and RNAs that are actively involved in cellular communication, indicating that they may be exploited as both diagnostics and therapeutics for conditions like cancer. These nanoparticles can also be used as nanocarriers in many types of research to carry agents such as drugs. Plant-derived exosome-like nanoparticles (PENs) are currently under investigation as a substitute for EXOs formed from mammalian cells, allowing researchers to get beyond the technical constraints of mammalian vesicles. Because of their physiological, chemical, and biological properties, PENs have a lot of promise for use as nanocarriers in drug delivery systems that can deliver various dosages, especially when it comes to large-scale repeatability. The present study has looked at the origins and isolation techniques of PENs, their anticancer properties, their usage as nanocarriers in the treatment of different illnesses, and their antioxidant properties. These nanoparticles can aid in the achievement of therapeutic objectives, as they have benign, non-immunogenic side effects and can pass biological barriers. Time-consuming and perhaps damaging PEN separation techniques is used. For the current PEN separation techniques to be used in commercial and therapeutic settings, they must be altered. In this regard, the concurrent application of biological sciences can be beneficial for improving PEN separation techniques. PENs' innate metabolic properties provide them a great deal of promise for application in drug delivery systems. However, there could be a risk to both the loaded medications and the intrinsic bioactive components if these particles are heavily armed with drugs. Therefore, to prevent these side effects, more studies are needed to devise sophisticated drug-loading procedures and to learn more about the physiology of PENs.


Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias , Animais , Exossomos/metabolismo , Engenharia Tecidual , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Mamíferos
5.
Front Endocrinol (Lausanne) ; 14: 1269266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964963

RESUMO

A typical condition of the female reproductive system is polycystic ovary syndrome (PCOS). Hyperinsulinemia, insulin resistance, obesity, and hyperandrogenism are just a few of the metabolic abnormalities linked to this disease. Type 2 diabetes, hypertension, and cardiovascular disease are further issues related to PCOS. One consequence of this syndrome for which numerous treatment procedures have been developed is infertility. Metformin and clomiphene, two common allopathic medications used to treat PCOS, both have drawbacks and are ineffective. It is vital to seek novel therapeutic modalities to address these constraints. Exosomes (EXOs) are a particular class of extracellular vesicles that cells release, and they are known to play a significant role in mediating intercellular communication. A wide range of cargo, including lipids, proteins, mRNA, miRNAs, and numerous other noncoding RNAs, are contained in the nanoscale lipid bilayer exosomes. The cytokine effects of stem cells and EXOs derived from them enable the defense against metabolic diseases like PCOS. Moreover, EXO microRNAs can potentially be employed as biomarkers in the detection and management of PCOS. In this study, the potential of stem cells and exosomes are specifically investigated in the diagnosis and treatment of PCOS as one of the diseases of the female reproductive system.


Assuntos
Diabetes Mellitus Tipo 2 , Exossomos , MicroRNAs , Síndrome do Ovário Policístico , Humanos , Feminino , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/tratamento farmacológico , Fatores Biológicos/uso terapêutico , MicroRNAs/genética , Células-Tronco
6.
Technol Cancer Res Treat ; 22: 15330338231205999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37817634

RESUMO

A significant number of cancer-related deaths are recorded globally each year, despite attempts to cure this illness. Medical science is working to develop new medication therapies as well as to find ways to identify this illness as early as possible, even using noninvasive techniques. Early detection of cancer can greatly aid its treatment. Studies into cancer diagnosis and therapy have recently shifted their focus to exosome (EXO) biomarkers, which comprise numerous RNA and proteins. EXOs are minuscule goblet vesicles that have a width of 30 to 140 nm and are released by a variety of cells, including immune, stem, and tumor cells, as well as bodily fluids. According to a growing body of research, EXOs, and cancer appear to be related. EXOs from tumors play a role in the genetic information transfer between tumor and basal cells, which controls angiogenesis and fosters tumor development and spread. To identify malignant activities early on, microRNAs (miRNAs) from cancers can be extracted from circulatory system EXOs. Specific markers can be used to identify cancer-derived EXOs containing miRNAs, which may be more reliable and precise for early detection. Conventional solid biopsy has become increasingly limited as precision and personalized medicine has advanced, while liquid biopsy offers a viable platform for noninvasive diagnosis and prognosis. Therefore, the use of body fluids such as serum, plasma, urine, and salivary secretions can help find cancer biomarkers using technologies related to EXOs.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Detecção Precoce de Câncer , Biomarcadores , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , Biomarcadores Tumorais/genética , Prognóstico
7.
Curr Mol Med ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592772

RESUMO

A major challenge in treating cancer is the development of drug resistance, which can result in treatment failure and tumor recurrence. Targeting cancer stem cells (CSCs) and non-coding RNAs (ncRNAs) with a polyphenolic substance called resveratrol has the ability to combat this problem by lowering cancer resistance to drugs and opening up new therapeutic options. Resveratrol alters the expression of genes related to self-renewal, modulating important signaling pathways involved in cancer initiation and CSC control. Additionally, resveratrol affects non-coding RNAs (ncRNAs), including Micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs which are essential for stemness, drug resistance, and other cancer-related activities. Numerous studies have shown that resveratrol has the potential to be an effective anticancer drug when used in combination therapy, but issues with absorption and pharmacokinetics still need to be resolved before it can be used in clinical applications. Reducing chemotherapy resistance by better understanding the intricate mechanisms by which resveratrol affects cancer cells and CSCs, as well as its impact on ncRNA expression, could eventually contribute to more effective cancer treatments. To completely understand these pathways and optimize the utilization of resveratrol in combination treatments, additional study is necessary.

8.
J Cancer Res Ther ; 19(2): 218-220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006061

RESUMO

Breast cancer is one of the most common cancers among women worldwide. Therefore, further research in this area remains necessary. In pursuit of cancer treatment, the use of aquatic and marine resources has been considered in recent years. Marine algae create a wide variety of metabolites with different biological activities, and their anticancer properties have been reported in several studies. With particles ranging in size between 30 and 100 nm in size, exosomes are a class of cell-released extracellular vesicles that contain DNA, RNA, and proteins. Nontoxic properties and lack of an immune response are critical considerations in the medical use of exosome nanoparticles. Studies have demonstrated that exosomes are used for cancer therapy and in several drug delivery trials; however, no study so far has been done on exosomes derived from marine algae. Research has shown that three-dimensional (3D) models of cancer are advantageous for studying drug effects. This hypothesis aims to design a 3D model of breast cancer in vitro and evaluate cell growth after treatment with a marine algae-derived exosome.


Assuntos
Neoplasias da Mama , Exossomos , Feminino , Humanos , Exossomos/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral
9.
Mol Biotechnol ; 65(12): 1935-1953, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37017917

RESUMO

Material engineering is a fundamental issue in the applications of materials in the medical field. One of the aspects of material engineering is incorporating recognition sites on the surface of biomaterials, which plays an essential role in increasing the efficiency of tissue engineering scaffolds in various aspects. The application of peptides and antibodies to establish the recognition and adhesion sites has limitations, such as fragility and instability under physical and chemical processes. Therefore, synthetic ligands such as nucleic acid aptamers have received much attention for easy synthesis, minimal immunogenicity, high specificity, and stability under processing. Due to the effective role of these ligands in increasing the efficiency of engineered constructs in this study, the advantages of nucleic acid aptamers in tissue engineering will be reviewed. Aptamer-functionalized biomaterials can attract endogenous stem cells to wounded areas and organize their actions to facilitate tissue regeneration. This approach harnesses the body's inherent regeneration potential to treat many diseases. Also, increased efficacy in controlled release, slow and targeted drug delivery are important issues in drug delivery for tissue engineering approaches which can be achieved by incorporating aptamers in drug delivery systems. Aptamer-functionalized scaffolds have very applications, such as diagnosis of cancer, hematological infections, narcotics, heavy metals, toxins, controlled release from the scaffolds, and in vivo cell tracing. Aptasensors, as a result of many advantages over other traditional assay methods, can replace older methods. Furthermore, their unique targeting mechanism also targets compounds with no particular receptors. Targeting cell homing, local and targeted drug delivery, cell adhesion efficacy, cytocompatibility and bioactivity of scaffolds, aptamer-based biosensor, and aptamer-functionalized scaffolds are the topics that will be examined in this review study.


Assuntos
Aptâmeros de Nucleotídeos , Ácidos Nucleicos , Engenharia Tecidual/métodos , Medicina Regenerativa , Preparações de Ação Retardada , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/uso terapêutico , Materiais Biocompatíveis , Ligantes
10.
BMC Cancer ; 23(1): 80, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694168

RESUMO

AIM AND BACKGROUND: Smoking is a modifiable risk factor for cancers. The aim of the study is to estimate the trend of mortality and DALYs of smoking-attributed cancers in the North Africa and Middle East (NAME) countries. METHODS: In this study, estimates from the Global Burden of Disease 2019 (GBD-2019) study were used to report the mortality and DALYs for 16 smoking-attributed cancers. The mortality and DALYs rates from smoking-attributed cancers were evaluated by age, sex, and the 21 countries of the NAME countries from 1990 to 2019. RESULTS: Age standardized mortality rates (ASMR) for the 29 smoking-attributed cancers in the NAME countries in 1990 and 2019 were estimated to be 24.7 (95% Uncertainty Interval: 21.5, 27.8) and 22.4 (95%UI: 19.8, 25.4) respectively, which shows a 9.2% decrease in the three decades. DALYs/100,000 for smoking-attributed cancers was, also, estimated to be 600.3 (95%UI: 521.6, 682.6) and 515.6 (95%UI: 454.9, 585.4) respectively, which indicates a 14.1% decreased in these three decades. In the last three decades, the percentage changes in DALYs/100,000 for smoking-attributed cancers in males and females were - 0.16 and - 0.03, respectively. Plus, The percentage changes in ASMR in males and females were - 12% and 8%, respectively. Furthermore, The highest ASMR and DALYs were observed in Lebanon, Turkey, and Palestine in 2019. CONCLUSION: The mortality rates of cancers from smoking have increased substantially among females, in most countries of the NAME region, in recent years. The burden caused by smoking can be reduced through modifying lifestyle and applying strict laws on smoking by governments and policymakers.


Assuntos
Carga Global da Doença , Neoplasias , Masculino , Feminino , Humanos , Anos de Vida Ajustados por Deficiência , Neoplasias/epidemiologia , Fatores de Risco , Fumar/efeitos adversos , Fumar/epidemiologia , Líbano , Anos de Vida Ajustados por Qualidade de Vida , Saúde Global
11.
Med Oncol ; 40(1): 31, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460860

RESUMO

Chemotherapy drugs are the first line of cancer treatment, but problems such as low intratumoral delivery, poor bioavailability, and off-site toxicity must be addressed. Cancer-specific drug delivery techniques could improve the therapeutic outcome in terms of patient survival. The current study investigated the loading of chemotherapy drugs loaded into exosomes for cancer treatment. Exosomes are the smallest extracellular vesicles found in body fluids and can be used to transfer information by moving biomolecules from cell to cell. This makes them useful as carriers. As the membranes of these nanoparticles are similar to cell membranes, they can be easily transported to carry different components. As most chemotherapy drugs are not easily soluble in liquid, loading them into exosomes can be a suitable solution to this problem. This cancer treatment could avert the injection of high doses of drugs and provide a more appropriate release mechanism.


Assuntos
Antineoplásicos , Exossomos , Vesículas Extracelulares , Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico
12.
Front Genet ; 13: 1009338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338966

RESUMO

Exosomes (EXOs) are natural nanoparticles of endosome origin that are secreted by a variety of cells in the body. Exosomes have been found in bio-fluids such as urine, saliva, amniotic fluid, and ascites, among others. Milk is the only commercially available biological liquid containing EXOs. Proof that exosomes are essential for cell-to-cell communication is increasingly being reported. Studies have shown that they migrate from the cell of origin to various bioactive substances, including membrane receptors, proteins, mRNAs, microRNAs, and organelles, or they can stimulate target cells directly through interactions with receptors. Because of the presence of specific proteins, lipids, and RNAs, exosomes act in physiological and pathological conditions in vivo. Other salient features of EXOs include their long half-life in the body, no tumorigenesis, low immune response, good biocompatibility, ability to target cells through their surface biomarkers, and capacity to carry macromolecules. EXOs have been introduced to the scientific community as important, efficient, and attractive nanoparticles. They can be extracted from different sources and have the same characteristics as their parents. EXOs present in milk can be separated by size exclusion chromatography, density gradient centrifugation, or (ultra) centrifugation; however, the complex composition of milk that includes casein micelles and milk fat globules makes it necessary to take additional issues into consideration when employing the mentioned techniques with milk. As a rich source of EXOs, milk has unique properties that, in addition to its role as a carrier, promotes its use in treating diseases such as digestive problems, skin ulcers, and cancer, Moreover, EXOs derived from camel milk are reported to reduce the risk of oxidative stress and cancer. Milk-derived exosomes (MDEs) from yak milk improves gastrointestinal tract (GIT) development under hypoxic conditions. Furthermore, yak-MDEs have been suggested to be the best treatment for intestinal epithelial cells (IEC-6 cell line). Because of their availability as well as the non-invasiveness and cost-effectiveness of their preparation, isolates from mammals milk can be excellent resources for studies related to EXOs. These features also make it possible to exploit MDEs in clinical trials. The current study aimed to investigate the therapeutic applications of EXOs isolated from various milk sources.

13.
J Tissue Eng Regen Med ; 16(12): 1121-1137, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36382408

RESUMO

Autografting, a major treatment for bone fractures, has potential risks related to the required surgery and disease transmission. Bone morphogenetic proteins (BMPs) are the most common osteogenic factors used for bone-healing applications. However, BMP delivery can have shortcomings such as a short half-life and the high cost of manufacturing the recombinant proteins. Gene delivery methods have demonstrated promising alternative strategies for producing BMPs or other osteogenic factors using engineered cells. These approaches can also enable temporal overexpression and local production of the therapeutic genes in the target tissues. This review addresses recent progress on engineered viral, non-viral, and RNA-mediated gene delivery systems that are being used for bone repair and regeneration. Advances in clustered regularly interspaced short palindromic repeats/Cas9 genome engineering for bone tissue regeneration also is discussed.


Assuntos
Terapia Genética , Engenharia Tecidual , Técnicas de Transferência de Genes , Regeneração Óssea/genética , Proteínas Morfogenéticas Ósseas
14.
Chem Phys Lipids ; 243: 105179, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35150707

RESUMO

INTRODUCTION: Using tissue engineering and modifying the tumor microenvironment, three-dimensional (3D) in vitro and in vivo cancer modeling can be performed with appropriate similarity to native. Exosomes derived from different sources have recently been used in cancer studies due to their anticancer effects. In this study, the effect of crab derived exosomes in 2 & 3-dimensional (2& 3D) in vivo models of breast cancer (BC) were investigated and compared with the doxorubicin (DOX). METHODS: 2D and 3D models of BC were induced using the chitosan/ß-glycerol phosphate hydrogel (Ch/ß-GP) and 1 × 106 4T1 cells in the female mice aged 6-8 weeks. 1 mg/ml exosome and 5 mg/kg DOX were injected by intratumoral (IT), intravenous (IV), and intraperitoneal (IP) methods into mice on day 9, 13, and 17 with and without hydrogel as a drug delivery system. After 21 days, the mice were sacrificed, and the tissues (lung, liver, and tumor) were removed. The weight and size of the tumor were measured. Real-time PCR assessed changes of VEGF, Bcl2, and P53 genes expression levels. Nitric oxide (NO) secretion from the cancer 3D model was evaluated by Griess assay. RESULTS AND CONCLUSION: Based on the results, the size and weight of tumors in treated groups with exosomes and DOX were reduced significantly (P ≤ 0.001, P ≤ 0.002, P ≤ 0.02) in 2D and 3D models. Changes in VEGF, Bcl2 and P53 gene expression levels were less in the 3D model than in the 2D model. Drug delivery with hydrogel increased tumor inhibition compared to drug injection without hydrogel. Decreased NO secretion was observed in all treatment groups compared to the control group (untreated). Crab exosomes showed anti cancer effects on 2&3D models of BC. 3D model of BC showed greater drug resistance than the 2D model after treating with crab derived exosomes and DOX. 3D model of BC mimics native tumor better than 2D and can be used in cancer studies and for drug screening with greater confidence than 2D model. Also, the use of slow release drug delivery system reduced drug resistance in both models.


Assuntos
Braquiúros , Neoplasias da Mama , Exossomos , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Exossomos/metabolismo , Feminino , Humanos , Hidrogéis/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/uso terapêutico , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/uso terapêutico
15.
Cell Tissue Bank ; 23(2): 261-269, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34173897

RESUMO

Since using tissue transplantation has faced limitations all over the world, regenerative medicine has introduced decellularized tissues as natural scaffolds and researchers are trying to improve their efficiency and function. In this study, to increase cell attachment and ultimately cell proliferation on decellularized bovine pericardia, scrophularia striata extract was used. Scrophularia striata is an Iranian traditional medicinal plant. For this aim after decellularization of bovine pericardium and analysis of its morphology, it was incubated in scrophularia striata solution. Next, isolated human adipose-derived mesenchymal stem cells were cultured on the tissue. Finally, MTT assay, nitric oxide assay, and scanning electron microscopy observation were performed. MTT showed an increase in cell survival after treating the tissue with the plant extract after 48 h in a dose dependent manner significantly. The survival of cells in 0.5%, 2.5%, and 5% groups was about 5, 10 and 15 folds higher in comparison to control groups, respectively. Additionally, nitric oxide secretion in 2.5% and 5% samples was three and five folds higher than that in control group, respectively. Moreover, SEM observation indicated an impressive and dose-dependent effect of using Scrophularia striata on tissue biocompatibility. The results of this study showed that using Scrophularia striata increased cell viability and cell attachment on decellularized pericardia which could pave the way for the use of natural extracts of medicinal plants to reduce unwanted effects and make desired changes in decellularized tissues.


Assuntos
Scrophularia , Animais , Bovinos , Humanos , Irã (Geográfico) , Óxido Nítrico , Pericárdio , Extratos Vegetais/farmacologia , Engenharia Tecidual , Alicerces Teciduais
16.
Int J Mol Cell Med ; 11(2): 117-126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37091035

RESUMO

The NF-kB signaling pathway was introduced as a key pathway in carcinogenesis that is induced by inflammation in gastrointestinal malignancies. The RelA transcription factor is an important component of this signaling pathway. Furthermore, CD44 is implicated in the tumorigenesis and metastasis of gastric cancer. The aim of this study was to assay the effect of RELA knockout on CD44 expression in MKN45 cells. CRISPR/Cas9 was used to knock out RELA in MKN-45. The median fluorescence intensity (MFI) of CD44 before and after RELA knockout is analyzed in MKN45. The CRISPR/Cas9 vector pSpCas9 (BB)-2A-Puro (PX459) was used for gRNA cloning (two guides). The MKN-45 cell line was co-transfected. The purified co-transfected cells with puromycin were cultured and used for the RELA gene expression assay by real-time PCR. Flow cytometry was used for the analysis of the MFI of CD44+ in MKN45. The results showed that 180 nucleotide sequences between exon 2 and exon 3 of RELA were deleted in MKN45. RELA expression significantly (P<0.001) decreased after CRISPR/Cas9 knockout. Compared to the control group, the MFI of CD44 in transfected cells significantly decreased (P <0.001). Knockout of RELA significantly decreased CD44 expression in MKN45 cells. It can be concluded that the NF-kB signaling pathway via RELA is related to CD44 expression and consequently the tumorigenesis of gastric cancer. More studies about this relationship are recommended.

17.
Cell J ; 23(6): 658-664, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34939759

RESUMO

OBJECTIVE: The use of animal or plant exosomes in cancer treatment is promising because of their easy access and low cost. Freshwater crabs are used in traditional Iranian medicine to treat cancer. This study aims to determine the anti-cancer properties of exosomes removed from freshwater crabs on a breast cancer cell line (4T1) compared to bone marrow mesenchymal stem cells (BMSCs). MATERIALS AND METHODS: In this experimental study, crab haemolymph exosomes were isolated via the precipitation method and characterised by electron microscopy, dynamic light scattering (DLS), and Western blot analysis. The protein concentration and total antioxidant capacity of these exosomes were determined by bicinchoninic acid (BCA) and cupric reducing antioxidant capacity (CUPRAC). The 4T1 cells and BMSCs were treated with exosomes and we assessed the cell survival by the resazurin and MTT assays. The level of nitric oxide (NO) secretion from the 4T1 cells was determined after treatment with the exosomes. RESULTS: Electron microscopy, DLS and Western blot for CD63 confirmed that the isolated exosomes were <100 nm in size and expressed CD63. The total antioxidant capacity in these exosomes was 1.003 µM/ml and the protein concentration was 650 mg/ml. Resazurin and MTT assay results showed a decrease in survival of the 4T1 cells (P≤0.001) after treatment with the exosomes compared to cell growth in the exosome-treated BMSCs. CONCLUSION: Crab haemolymph contains protein-rich exosomes with antioxidant activities that can have anti-cancer effects on 4T1 cells. These exosomes may be proposed for breast cancer therapeutics.

18.
J Biomed Mater Res A ; 109(7): 1275-1285, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33058428

RESUMO

The two-dimensional (2D) models of breast cancer still exhibit a limited success. Whereas, three-dimensional (3D) models provide more similar conditions to the tumor for growth of cancer cells. In this regard, a 3D in vivo model of breast cancer using 4 T1 cells and chitosan-based thermosensitive hydrogel were designed. Chitosan/ß-glycerol phosphate hydrogel (Ch/ß-GP) was prepared with a final ratio of 2% and 10%. The hydrogel properties were examined by Fourier transformed infrared spectroscopy, MTT assay, pH, scanning electron microscopy, and biodegradability assay. 3D model of breast cancer was induced by injection of 1 × 106 4 T1 cells in 100 µl hydrogel and 2D model by injection of 1 × 106 4 T1 cells in 100 µl phosphate-buffered saline (PBS) subcutaneously. After 3 weeks, induced tumors were evaluated by size and weight determination, ultrasound, hematoxylin- and eosin and Masson's trichrome staining and evaluating of cancer stem cells with CD44 and CD24 markers. The results showed that hydrogel with physiological pH had no cytotoxicity. In 3D model, tumor size and weight increased significantly (p ≤ .001) in comparison with 2D model. Histological and ultrasound analysis showed that 3D tumor model was more similar to breast cancer. Expression of CD44 and CD24 markers in the 3D model was more than 2D model (p ≤ .001). This 3D in vivo model of breast cancer mimicked native tumor and showed malignant tissue properties. Therefore, the use of such models can be effective in various cancer studies, especially in the field of cancer stem cells.


Assuntos
Neoplasias da Mama/patologia , Quitosana/química , Neoplasias Mamárias Animais/patologia , Células-Tronco Neoplásicas/patologia , Alicerces Teciduais/química , Animais , Linhagem Celular Tumoral , Feminino , Glicerofosfatos/química , Humanos , Hidrogéis/química , Camundongos Endogâmicos BALB C , Temperatura
19.
J Tissue Eng Regen Med ; 15(2): 116-128, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33175476

RESUMO

The aim of this study was evaluating the effects of vacuum on microstructure and biocompatibility of bovine decellularized pericardium. So the bovine pericardia were decellularized and then the vacuum was applied for two periods of time; 90 and 180 min. DNA, glucose amino glycan, collagen and elastin content assay, scanning electron microscopy (SEM) examination, hematoxylin and eosin (H&E) and Masson's trichrome stainings performed to evaluate microstructure of tissues. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test, subcutaneous implantation, and tensile test were used to assay biocompatibility and mechanical properties of decellularized tissues. The results showed that applying vacuum reduced residual DNA significantly. Vacuum after 180 min reduced more residual DNA. There were no significant differences in the content of glucose amino glycan (GAG), collagen, and elastin between the vacuumed and control groups. SEM examination was revealed that vacuum for 180 min increased pore size and porosity more than 90 min and control groups. H&E and Masson's trichrome stainings revealed extracellular matrix preservation after decellularization in all groups. Cell viability was increased in vacuumed samples significantly after 72 h in vaccumed samples. H&E staining and tensile test after implantation of tissues were showed less inflammation in the vacuum applied tissues and increased durability. The vacuum increased DNA removal, pore size, porosity, and biocompatibility in vitro and in vivo and durability of bovine decellularized pericardium in vivo. Considering the important role of time, more studies should be performed to optimize time, intensity, and method of application of vacuum in decellularization of different tissues as well as bovine pericardium.


Assuntos
Matriz Extracelular/química , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Pericárdio/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Bovinos , Técnicas de Cultura de Células , Humanos , Vácuo
20.
Chem Phys Lipids ; 234: 105009, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189639

RESUMO

There are no commercially available effective antiviral medications or vaccines to deal with novel coronavirus disease (COVID-19). Hence there is a substantial unmet medical need for new and efficacious treatment options for COVID-19. Most COVID-19 deaths result from acute respiratory distress syndrome (ARDS). This virus induces excessive and aberrant inflammation so it is important to control the inflammation as soon as possible. To date, results of numerous studies have been shown that mesenchymal stem cells and their derivatives can suppress inflammation. Exosomes function as intercellular communication vehicles to transfer bioactive molecules (based on their origins), between cells. In this review, the recent exosome-based clinical trials for the treatment of COVID-19 are presented. Potential therapy may include the following items: First, using mesenchymal stem cells secretome. Second, incorporating specific miRNAs and mRNAs into exosomes and last, using exosomes as carriers to deliver drugs.


Assuntos
COVID-19/terapia , Sistemas de Liberação de Medicamentos/métodos , Exossomos/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais , SARS-CoV-2 , Antivirais/administração & dosagem , Antivirais/uso terapêutico , COVID-19/imunologia , Ensaios Clínicos como Assunto , Exossomos/química , Humanos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Resultado do Tratamento , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA