Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 246: 118027, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159670

RESUMO

The study explores co-gasification of palm oil decanter cake and alum sludge, investigating the correlation between input variables and syngas production. Operating variables, including temperature (700-900 °C), air flow rate (10-30 mL/min), and particle size (0.25-2 mm), were optimized to maximize syngas production using air as the gasification agent in a fixed bed horizontal tube furnace reactor. Response Surface Methodology with the Box-Behnken design was used employed for optimization. Fourier Transformed Infra-Red (FTIR) and Field Emission Scanning Electron Microscopic (FESEM) analyses were used to analyze the char residue. The results showed that temperature and particle size have positive effects, while air flow rate has a negative effect on the syngas yield. The optimal CO + H2 composition of 39.48 vol% was achieved at 900 °C, 10 mL/min air flow rate, and 2 mm particle size. FTIR analysis confirmed the absence of C─Cl bonds and the emergence of Si─O bonds in the optimized char residue, distinguishing it from the raw sample. FESEM analysis revealed a rich porous structure in the optimized char residue, with the presence of calcium carbonate (CaCO3) and aluminosilicates. These findings provide valuable insights for sustainable energy production from biomass wastes.


Assuntos
Compostos de Alúmen , Gases , Esgotos , Gases/química , Óleo de Palmeira , Temperatura , Biomassa
2.
Artigo em Inglês | MEDLINE | ID: mdl-37690386

RESUMO

This article presents the synthesis and application of a novel magnetic eutectogel constituting a polymeric deep eutectic solvent (PDES), carboxylated multiwall carbon nanotube (MWCNT-COOH), and super-dispersible/super-paramagnetic polyvinylpyrrolidone coated-Fe3O4 nanocrystals incorporated in alginate gel. Different methods were used for the characterization of novel polymeric based DES gel including FT-NMR, ATR-FTIR, and SEM were used. The novel DES eutectogel was used for the extraction of pesticides from honey. The modified eutectogel with PDES, MWCNT, and PDES-MWCNT showed 1.8-, 1.4-, and 2.5-fold enhancement in the sorption efficiency under green magnetic micro-solid-phase extraction (MSPE) method before GC-MS analysis. Important factors including the acidity of the samples, adsorption and desorption conditions, and the ionic strength of the preparation solution were investigated. The matrix effect, specificity, the quantification limits (0.023-1.023 µg kg-1), linear dynamic range (0.023-500 µg kg-1 with R2 of 0.9845-0.9986), relative standard deviations (<8.4%), were evaluated. In addition, the method was used to analyze 12 pesticides in four samples of honey. In the spiked concentration range of 0.1 to 10 µg kg-, the obtained recoveries were between 73.2 and 110.8% (RSD% = 8.1%, n = 3).


Assuntos
Nanotubos de Carbono , Praguicidas , Praguicidas/análise , Solventes/química , Nanotubos de Carbono/química , Povidona , Solventes Eutéticos Profundos , Ácido Benzoico , Extração em Fase Sólida/métodos , Ácidos Carboxílicos , Fenômenos Magnéticos
3.
Environ Res ; 229: 115915, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37076030

RESUMO

Pharmaceutical compounds are among the environmental contaminants that cause pollution of water resources and thereby threaten ecosystem services and the environmental health of the past decades. Antibiotics are categorized as emerging pollutants due to their persistence in the environment that are difficult to remove by conventional wastewater treatment. Ceftriaxone is one of the multiple antibiotics whose removal from wastewater has not been fully investigated. In this study, TiO2/MgO (5% MgO) the efficiency of photocatalyst nanoparticles in removing ceftriaxone was analyzed by XRD, FTIR, UV-Vis, BET, EDS, and FESEM. The results were compared with UVC, TiO2/UVC, and H2O2/UVC photolysis processes to evaluate the effectiveness of the selected methods. Based on these results, the highest removal efficiency of ceftriaxone from synthetic wastewater was 93.7% at the concentration of 400 mg/L using TiO2/MgO nano photocatalyst with an HRT of 120 min. This study confirmed that TiO2/MgO photocatalyst nanoparticles efficiently removed ceftriaxone from wastewater. Future studies should focus on the optimization of reactor conditions and improvements of the reactor design to obtain higher removal of ceftriaxone from wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Raios Ultravioleta , Óxido de Magnésio , Ceftriaxona , Peróxido de Hidrogênio , Ecossistema , Titânio , Antibacterianos , Catálise
4.
Chemosphere ; 320: 138065, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36754307

RESUMO

Pesticides are a large group of pristine organic contaminants, which are widely discharged into environmental water due to agricultural activities. Hence, extraction, determination, and removal of pesticides from water resources are necessary for human health. In this study, novel adsorbent was developed based on three-dimensional magnetic graphene coated with gold nanoparticles (3D-MG@AuNPs) for extraction of chlorpyrifos, dicrotophos, fenitrothion, and piperophos as four specific organophosphorus pesticides (OPPs) from wastewater and tap water samples. The proposed nanocomposite was characterized; FTIR and EDX are performed for the expected functional groups and elemental analysis, SEM showed the unique and spherical AuNPs are well dispersed over graphene sheets. In this investigation, the important parameters that have effect on the extraction efficiency, including the desorbing solvent, desorbing solvent volume, vortex time, the extraction time, adsorbent dosage, pH of sample solutions, and salt effect were evaluated. In conclusion, the measured amounts of the chosen OPPs were determined using the gas chromatography microelectron capture (µECD-GC) method. Limits of quantification (S/N ratio of 10) and detection (S/N ratio of 3) were attained at concentrations of 0.26-0.43 µg.L-1 and 0.08-0.14 µg.L-1, respectively. According to the results of the investigations, the synthesized 3D-MG@AuNPs did not require any complicated sample preparation methods; therefore, it is a very good choice for solid magnetic phase extraction studies.


Assuntos
Clorpirifos , Grafite , Inseticidas , Nanopartículas Metálicas , Praguicidas , Humanos , Água/química , Praguicidas/análise , Grafite/química , Ouro , Compostos Organofosforados/análise , Nanopartículas Metálicas/análise , Inseticidas/análise , Clorpirifos/análise , Solventes/química , Extração em Fase Sólida/métodos , Fenômenos Magnéticos , Limite de Detecção
5.
Artigo em Inglês | MEDLINE | ID: mdl-36231997

RESUMO

The drop immerses calcium chloride aqueous solution was utilized to prepare the zero valent iron-doped polyethersulfone beads (PES/ZVI) for the efficient removal of arsenic from apatite-soil treated waters. The proposed beads can assist in promoting uptake efficiency by hindering ZVI agglomeration due to a high porosity and different active sites. The PES/ZVI beads were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and vibrating sample magnetism (VSM). The main objective of this study was to investigate the function of new PES/ZVI beads with an increased removal efficiency for the remediation of arsenic ions from the apatite-soil treated waters. A maximum adsorption removal of 82.39% was achieved when the experiment was performed with 80 mg of adsorbent for a contact time of 180 min. Based on the results, a removal efficiency >90% was obtained after 300 min of shaking time with an arsenic concentration of 20 mg·L-1. The experimental process was fitted with the Langmuir model due to the high R2 (0.99) value compared to the Freundlich model (0.91) with an adsorption capacity of 41.32 mg·g-1. The adsorption process speed was limited by pseudo-second-order (R2 = 0.999) and the adsorption mechanism nature was endothermic and physical.


Assuntos
Arsênio , Poluentes Químicos da Água , Adsorção , Apatitas , Arsênio/análise , Cloreto de Cálcio , Concentração de Íons de Hidrogênio , Íons , Ferro/química , Cinética , Fenômenos Magnéticos , Solo , Espectroscopia de Infravermelho com Transformada de Fourier , Água/análise , Poluentes Químicos da Água/análise
6.
J Environ Manage ; 320: 115772, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35944317

RESUMO

Palm oil mill waste has a complex cellulosic structure, is rich in nutrients, and provides a habitat for diverse microbial communities. Current research focuses on how the microbiota and organic components interact during the degradation of this type of waste. Some recent studies have described the microbial communities present in different biodegradation processes of palm oil mill waste, identifying the dominant bacteria/fungi responsible for breaking down the cellulosic components. However, understanding the degradation process's mechanisms is vital to eliminating the need for further pretreatment of lignocellulosic compounds in the waste mixture and facilitating the commercialization of palm oil mill waste treatment technology. Thus, the present work aims to review microbial community dynamics via three biological treatment systems comprehensively: composting, vermicomposting, and dark fermentation, to understand how inspiration from nature can further enhance existing degradation processes. The information presented could be used as an umbrella to current research on biological treatment processes and specific research on the bioaugmentation of indigenous microbial consortia isolated during the biological degradation of palm oil mill waste.


Assuntos
Compostagem , Bactérias/metabolismo , Biodegradação Ambiental , Resíduos Industriais/análise , Consórcios Microbianos , Óleo de Palmeira/metabolismo
7.
Environ Res ; 212(Pt B): 113164, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35398078

RESUMO

Metal-organic frameworks (MOFs) are a promising class of porous nanomaterials in the field of environmental remediation. Ni-MOF and Fe-MOF were chosen for their advantages such as structural robustness and ease of synthesis route. The structure of prepared MOFs was characterized using FE-SEM, XRD, FTIR, and N2 adsorption-desorption. The efficiency of MOFs to remove organic model contaminants (anionic Alizarin Red S (ARS) and cationic malachite green (MG) and inorganic fluoride was studied. Fe-MOF and Ni-MOF adsorbed 67, 88, 6% and 32, 5, and 9% of fluoride, ARS, and MG, respectively. Further study on ARS adsorption by Fe-MOF showed that the removal efficiency was high in a wide range of pH from 3 to 9. Moreover, dye removal was directly increased by adsorbent mass (0.1-0.75 g/L) and decreased by ARS concentration (25-100 mg/L). The pseudo-first-order kinetic model and Langmuir isotherm model with a qmax of 176.68 mg/g described the experimental data well. The separation factor, KL, was in the range of 0-1, which means the adsorption process was favorable. In conclusion, Fe-MOF showed remarkable adsorption of organic and inorganic model contaminants.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Adsorção , Fluoretos , Ferro/química , Níquel , Poluentes Químicos da Água/química
8.
Environ Sci Pollut Res Int ; 29(4): 5881-5890, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34431052

RESUMO

Prevalence of fluorosis is a worldwide public health problem especially in many states of India. It is necessary to find out the fluoride endemic areas to adopt remedial measures to the people on the risk of fluorosis. The target goals of this research were to assess (a) the exposure of fluoride concentration; (b) probabilistic risk assessment, sensitivity analysis, and uncertainty through intake of groundwater among population of Agra City (infants, children and adults) by Crystal Ball software; and (c) spatial distribution of HQ and fluoride concentration. A total of sixty samples from standing tube wells/hand pumps were gathered from selected and identified fluoride prevalent areas in Agra City. The concentration of fluoride scrutinized was obtained to be ranging from 1.32 to 4.60 mg/L with mean value of 2.36 in Agra City, and more than 91% of samples investigated surpassed the allowable level set for fluoride concentration in potable water 1.5 mg/L, although 9% of the samples were well within the drinking water guidelines (0.5-1.5 mg/L). The hazard quotient (HQ) was obtained to an enormous difference in the exposure dose in infants (1.66-3.91), children (1.87-4.4), and adults (0.92-2.16), correspondingly. The non-carcinogenic HQ values in the group of infants, children, and more than 90% of adults were higher than those of the safety level (i.e., HQ >1). Consequently, the non-carcinogenic risks (HQ level) of fluoride vary from the most to the least: children, infant, and adults, respectively. With 87.41% certainty, the results indicated that the HQ values are between 1 and 3.42. So, infant is the most vulnerable group to fluoride consumption in study area. Uncertainty analysis results indicated that the children group's HQ level was between 1 and 1.90 with 38.48% certainty. To avoid further worsening of the situation as far as health is concerned, remedial actions like alternate sources of water supply and appropriate treatment of water need to be adopted besides required medical attention to affected people.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Adulto , Criança , Água Potável/análise , Monitoramento Ambiental , Fluoretos/análise , Sistemas de Informação Geográfica , Humanos , Lactente , Método de Monte Carlo , Medição de Risco , Análise Espacial , Poluentes Químicos da Água/análise
9.
Environ Res ; 201: 111588, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34175289

RESUMO

In this study, magnetic sporopollenin supported cyanocalixarene (MSP-CyCalix) nanocomposite was synthesized and introduced as an adsorbent material for the removal of pesticides from aqueous media. MSP-CyCalix was characterized by different analytical techniques FTIR, SEM, EDX, BET, VSMand TEM. Chlorpyrifos and hexaconazole pesticides were chosen as model analytes solutions for testing the adsorption efficiency of MSP-CyCalix adsorbent. The adsorption results showed that the incorporated cyano functional groups significantly increased the chemical reactivity and adsorption capacity for pesticides. To obtain the highest possible performance, experimental parameters such as pH, salt, dosage and time were optimized. Adsorption kinetics and isotherms models showed that pesticide adsorption process was well fitted with the pseudo-second-order and Langmuir models with a maximum adsorption capacity of 13.88 mg g-1 and 12.34 mg g-1 and a removal efficiency of >90% for both pesticides. Lastly, MSP-CyCalix maintained a removal efficiency of >80% for ten cycles and 60% after the eleventh cycles of usage. The results proved that MSP-CyCalix nanocomposite can be used as an efficient adsorbent for the removal of pesticide residues from water.


Assuntos
Praguicidas , Biopolímeros , Carotenoides , Cinética , Fenômenos Magnéticos , Água
10.
Bioresour Technol ; 323: 124561, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33373800

RESUMO

The magnetic graphene oxide (GO) supported with heterogeneous ternary mixed metal oxide (MMO) was used as nanocatalyst to enhance the conversion of waste frying oil (WFO) triglycerides to biodiesel via esterification process. In this regard, acidic MGO was modified with three basic metal cations of cerium, zirconium, and strontium oxides to produce heterogeneous MGO@MMO nanocatalyst. The nanocatalyst was characterized by FESEM, TEM, EDX and FTIR. The influence of different parameters such as catalyst material ratio, methanol to oil ratio, contact time, and reaction temperature was studied. Based on the results of effecting parameters, the MGO@MMO nanocatalyst converted WFO to biodiesel with a yield 94%, a reaction time of 90 min, methanol to oil ratio (8:1), and a temperature of 60 °C. Esterification mechanism indicated the MGO@MMO nanocatalyst having both binary Brønsted acid-base sites that increased the conversion yields as compared to MGO and MMO at low temperatures.


Assuntos
Biocombustíveis , Óxidos , Catálise , Esterificação , Grafite , Fenômenos Magnéticos , Óleos de Plantas
11.
Sci Total Environ ; 749: 141511, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32829276

RESUMO

Diffuse pollution formed during a surface runoff on paved surfaces is a source of heavy metals (HMs) of various origin. This research study indicates the connection between bottom sediments of retention tanks located on urban streams and road sweeping wastes (RSW) that migrate during surface runoff to the stormwater drainage systems with discharge to the retention tanks. Moreover, we test the primary sources of HMs in RSW by analysing the mechanical wastes (MW) produced by vehicles in order to track the relationship between car parts and HMs deposited in the retention tanks receiving the surface runoff from streets. To identify the origin of HMs diverse source tracking approaches were used: statistical methods, Pb isotope ratios, and the flag element ratio approach. MW presented a very high HMs content (max observed values in mg/kg d.w.: 10477-Zn, 3512-Cu, 412-Pb, 3.35-Cd, 226-Ni, and 633-Cr), while for RSW the HMs content was similar to the bottom sediments. The total carcinogenic risk raises concerns due to the Cr content. The source of Zn was tyre wear and traffic. Ni, Cr, Fe, and Cd were correlated to Zn and shared a common/similar origin. PCA suggested that Cu features quasi-independent behaviour. The Pb isotopic ratios of RSW indicated Pb enrichment originating from coal combustion, while the gasoline and diesel source of Pb was excluded. The Pb isotopic ratios characteristic for MW were in within the following ranges: 1.152-1.165 (206Pb/207Pb), 2.050-2.085 (208Pb/206Pb), and 2.350-2.418 (208Pb/207Pb). The complex analysis of HMs origin confirmed the motorization origin of HMs: Zn, Cr, Ni, and Cd, except Pb (coal combustion as the main source) and Cu (non-uniform origin). The results of various source tracking methods were coherent, but Pb isotope ratios alone brought important information allowing to link Pb in sediments to the atmospheric deposition of coal combustion products.

12.
Artigo em Inglês | MEDLINE | ID: mdl-32182710

RESUMO

Antibiotics are resistant to biodegradation, and their removal by biological processes is difficult. The purpose of this study was to investigate the removal of azithromycin from water using ultraviolet radiation (UV), Fe (VI) oxidation process and ZnO nanoparticles. The effect of different parameters such as pH, temperature, hydraulic retention time (HRT), the concentration of Fe (VI) and ZnO nanoparticles and UV intensity on the removal of azithromycin from water was investigated. The optimal conditions for the removal of azithromycin were a pH of 2, a temperature of 25 °C, a HRT of 15 min, and a ratio of ZnO nanoparticles to the initial concentration of azithromycin (A/P) of 0.00009 which was fitted by Langmuir isotherm. In addition, the optimal conditions for the removal of azithromycin using UV radiation were a pH of 7, a temperature of 65 °C, a HRT of 60 min, and UV radiation power of 163 mW/cm2. For the Fe (VI) oxidation process, the optimal conditions were a pH of 2, a temperature of 50 °C and a HRT of 20 min. Also, the optimal ratio of Fe (VI) to the initial concentration of antibiotic was between 0.011 and 0.012. The results of this study showed that the Fe (VI) oxidation process, UV radiation, and ZnO nanoparticles were efficient methods for the removal of azithromycin from water.


Assuntos
Azitromicina/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Óxido de Zinco , Concentração de Íons de Hidrogênio , Nanopartículas , Oxirredução , Raios Ultravioleta , Água
13.
Artigo em Inglês | MEDLINE | ID: mdl-31684036

RESUMO

Excessive intake of fluoride can cause adverse health effects. Consumption of tea as a popular drink could be a potential source of fluoride exposure to humans. This research aimed to evaluate the fluoride concentration in tea among the Iranian people using the available data in the literature and to assess the health risk related to the consumption of tea in men, women, and children. The health risk assessment was conducted using the chronic daily intake and hazard quotient according to the approach suggested by the Environmental Protection Agency. The fluoride content in published studies varied noticeably, ranging from 0.13 to 3.27 mg/L. The results revealed that the hazard quotient (HQ) in age groups of women (21-72 years) and children (0-11 years) was within the safe zone (HQ < 1) which showed that there was no potential of non-carcinogenic risk associated with drinking tea in these groups. However, in one case of the men (21-72 years), the HQ > 1 which shows a probable risk of fluorosis. The order of non-carcinogenic health risks in the studied groups was in the order of men > women > children. The results of this can be useful for organizations with the responsibility of human health promotion.


Assuntos
Exposição Dietética/análise , Fluoretos/análise , Fluorose Dentária , Contaminação de Alimentos/análise , Chá/química , Adulto , Idoso , Feminino , Humanos , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Medição de Risco , Adulto Jovem
14.
Regul Toxicol Pharmacol ; 106: 68-80, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31028799

RESUMO

Fluoride (F-), a harmful compound if present in high concentration, is typically found in groundwater. It is important to investigate the F- concentrations in groundwaters of areas where individuals use groundwater for drinking purposes. The objectives of this study were: (a) to estimate the F- exposure, and (b) to assess the non-carcinogenic risk through consumption of groundwater among urban population (different age groups) of Agra city. A total of 28 groundwater samples were collected from Agra city in May 2016, which comprised 22 samples from hand pump and 6 samples from tube wells from shallow aquifers at different sites. The F- concentrations varied from 0.90 to 4.12 mg/L with an average value of 1.88 mg/L. The results obtained reveal that about 64% of the samples exceeded the F- permissible limit of 1.5 mg/L. Nevertheless, 32% of the samples were well within the WHO drinking water guidelines and 3.5% of the samples from the groundwater were below the 1.0 mg/L threshold. The maximum estimated exposure doses were 0.69, 0.31 and 0.12 mg/kg/day for infants, children and adults, respectively. A dental fluorosis becomes evident when the results obtained are compared with an oral reference dose of 0.06 mg/kg/day. The hazard quotient (HQ) was found to be more than 1 for infants and children in all the studied areas which indicates that young consumers are more vulnerable to non-carcinogenic risk due to exposure of F-. On the other hand, the adults at about 71% of the sampled sites may be victims of non-carcinogenic risk. From the results obtained in this study, it is recommended that there be implementation of the appropriate remediation for defluoridation of water to circumvent the population from the probable health risks of F-.


Assuntos
Monitoramento Ambiental , Fluoretos/análise , Água Subterrânea/química , Poluentes Químicos da Água/análise , Administração Oral , Criança , Pré-Escolar , Fluoretos/administração & dosagem , Fluoretos/efeitos adversos , Humanos , Índia , Lactente , Recém-Nascido , Medição de Risco , Poluentes Químicos da Água/administração & dosagem , Poluentes Químicos da Água/efeitos adversos
15.
Int J Phytoremediation ; 19(5): 413-424, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27748626

RESUMO

Artificial neural networks (ANNs) have been widely used to solve the problems because of their reliable, robust, and salient characteristics in capturing the nonlinear relationships between variables in complex systems. In this study, ANN was applied for modeling of Chemical Oxygen Demand (COD) and biodegradable organic matter (BOD) removal from palm oil mill secondary effluent (POMSE) by vetiver system. The independent variable, including POMSE concentration, vetiver slips density, and removal time, has been considered as input parameters to optimize the network, while the removal percentage of COD and BOD were selected as output. To determine the number of hidden layer nodes, the root mean squared error of testing set was minimized, and the topologies of the algorithms were compared by coefficient of determination and absolute average deviation. The comparison indicated that the quick propagation (QP) algorithm had minimum root mean squared error and absolute average deviation, and maximum coefficient of determination. The importance values of the variables was included vetiver slips density with 42.41%, time with 29.8%, and the POMSE concentration with 27.79%, which showed none of them, is negligible. Results show that the ANN has great potential ability in prediction of COD and BOD removal from POMSE with residual standard error (RSE) of less than 0.45%.


Assuntos
Vetiveria/metabolismo , Recuperação e Remediação Ambiental/métodos , Resíduos Industriais/análise , Redes Neurais de Computação , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Recuperação e Remediação Ambiental/instrumentação , Malásia , Indústria Manufatureira , Óleo de Palmeira , Óleos de Plantas , Eliminação de Resíduos Líquidos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA