Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Curr Drug Deliv ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37815182

RESUMO

INTRODUCTION: In the present study, neuroprotective effects of berberine (BBR) and berberine nanomicelle (BBR-NM) against lipopolysaccharides (LPS)-induced stress oxidative were investigated, and compared by evaluating their antioxidant and anti-inflammatory activities in PC12 cells, and rat brains. A fast, green, and simple synthesis method was used to prepare BBR-NMs. METHOD: The prepared BBR-NMs were then characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). In vitro experiments were carried out on the LPS-treated PC12 cell lines to investigate the anti-cytotoxic and antioxidant properties of BBR-NM and BBR. The results showed that BBR-NMs with a diameter of ~100 nm had higher protective effects against ROS production and cytotoxicity induced by LPS in PC12 cells in comparison with free BBR. RESULTS: Moreover, in vivo experiments indicated that the activity levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), increased in the brain of LPS-treated rats administrated with BBR-NM at the optimum dose of 100 mg.kg-1 . BBR-NM administration also resulted in decreased concentration of lipid peroxidation (MDA) and pro-inflammatory cytokines, such as Serum interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α). CONCLUSION: Overall, BBR-NM demonstrated higher neuroprotective effects than free BBR, making it a promising treatment for improving many diseases caused by oxidative stress and inflammation.

2.
Med Oncol ; 40(5): 126, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961614

RESUMO

Cancer is a major cause of death worldwide. Cancer-resistant to chemo or radiotherapy treatment is a challenge that could be overcome by a nanotechnology approach. Providing a theranostic nano-platform for different cancer treatment strategies could be revolutionary. Here we introduce a multifunctional theranostic nanostructure which has the capacity for improving cancer diagnosis and treatment through better chemo and radiotherapy and current x-ray imaging systems through co-encapsulation of a small gold cluster and anticancer drug doxorubicin. 2 nm gold clusters represent good heating under radio frequency electric field (RF-EF) exposure and have been used for in vitro hyperthermia treatment of cancerous cells. Liposomal doxorubicin (169 ± 19.8 nm) with gold clusters encapsulation efficiency of 13.2 ± 3.0% and doxorubicin encapsulation efficiency of 64.7 ± 0.7% were prepared and studied as a theranostic agent with a high potential in different cancer treatment modalities. Exposure to a radiofrequency electric field on prepared formulation caused 20.2 ± 2.1% drug release and twice decreasing of IC50 on colorectal carcinoma cells. X-ray attenuation efficiency of the liposomal gold cluster was better than commercial iohexol and free gold clusters in different concentrations. Finally, treatment of gold clusters on cancerous cells results in a significant decrease in the viability of irradiated cells to cobalt-60 beam. Based on these experiments, we concluded that the conventional liposomal formulation of doxorubicin that has been co-encapsulated with small gold clusters could be a suitable theranostic nanostructure for cancer treatment and merits further investigation.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Lipossomos/química , Medicina de Precisão , Ouro/química , Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
3.
J Pharm Pharmacol ; 74(9): 1307-1319, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35833585

RESUMO

OBJECTIVES: Metformin has been shown to kill cancer stem-like cells in genetically various types of breast carcinoma. With the aim to simultaneously eradicate the bulk population of tumour cells and the rare population of cancer stem-like cells in breast cancer tissues, we used the combination chemotherapy of docetaxel (DTX) with metformin (MET). Furthermore, we introduce an active loading method based on ammonium sulphate 250 mM (SA) for encapsulating docetaxel into liposomes. METHODS: Docetaxel and metformin encapsulated into PEGylated liposomes with two different methods based on remote or passive loading methods, respectively. The size and surface charge of the liposomes were characterized. DTX content in the nanoliposomes was measured by the high-performance liquid chromatography method. The drug release profiles were evaluated in phosphate-buffered dextrose 5% with the pH of 6.5 and 7.4. We examined the antitumour activity of Taxotere (TAX), and liposomal formulation of DTX and MET as a monotherapy or combination therapy. The biodistribution of liposomes was also investigated using 99mTc hexamethyl propylene amine oxime method in BALB/c mice bearing 4T1 breast carcinoma tumours. KEY FINDINGS: The final formulations were prepared according to the best physicochemical characteristics which were HSPC/mPEG2000-DSPE/Chol (DTX liposomes) and HSPC/DPPG/mPEG2000-DSPE/Chol (MET liposomes), at molar ratios of 85/5/10 and (55/5/5/35), respectively. In vivo experiments showed that when free or liposomal metformin used in combination with liposomal docetaxel, they prolonged median survival time (MST) from 31 in the control group to 46 days, which demonstrates their promising effects on the survival of the 4T1 breast carcinoma mice models. Moreover, combination therapies could significantly increase life span in comparison with phosphate-buffered saline (PBS) and Taxotere groups at the same dose. Furthermore, in the combination therapy study, treatment with DTX liposomes prepared by ammonium sulphate 250 mM buffer alone resulted in similar therapeutic efficacy to combination therapy. The biodistribution study exhibited significant accumulation of DTX liposomes in the tumours due to the Enhanced Permeability and Retention effect. CONCLUSIONS: This study also showed that metformin-based combinatorial chemotherapies have superior efficacy versus their corresponding monotherapy counterparts at same doses. The findings confirm that liposomes based on ammonium sulphate 250 mM could be as a promising formulation for efficient DTX delivering and cancer targeting and therefore merit further investigations.


Assuntos
Antineoplásicos , Metformina , Neoplasias , Sulfato de Amônio , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Docetaxel/farmacologia , Lipossomos/química , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Fosfatos , Polietilenoglicóis/química , Distribuição Tecidual
4.
Biotechnol Rep (Amst) ; 34: e00730, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35686000

RESUMO

This review highlights using nanotechnology in increasing the bioavailability of AP (Apigenin) to enhance its therapeutic efficacy in breast cancer treatment. Breast cancer is one of the most leading causes of cancer death in women both in developed and developing countries. According to several epidemiological and clinical trial studies that indicate progestin-stimulated breast cancer in post-menopausal women; it is necessary to determine compounds to suppress or attenuate the tumor-promoting effects of progestins in breast cells. For this purpose, using the natural anti-progestins, including AP compared with the chemical ones could be significantly effective due to the lack of toxicities and contradiction effects. However, AP is categorized as a Class II drug of Biopharmaceutical Classification System with low solubility in water which limited its therapeutic effects. Therefore, nanotechnology due to the presentation of remarkable properties has overcome this limitation through enhanced the solubility and bioavailability of AP. In this regard, various nanocarriers such as nanocrystals, micelles, liposomes, PLGA, etc., have highlighted the significantly increased bioavailability and therapeutic efficacy of AP. Therefore, we will focus on the anticancer effects of AP in breast cancers, including involved mechanisms, the chemistry of AP and its bioavailability, finally different nanostructure systems to enhance the bioavailability of AP.

5.
BMC Pharmacol Toxicol ; 22(1): 54, 2021 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-34600570

RESUMO

BACKGROUND: Berberine (BBR) is a plant alkaloid that possesses anti-inflammatory and anti-oxidant effects with low oral bioavailability. In this study, micelle formulation of BBR was investigated to improve therapeutic efficacy and examined its effect on the secretion of inflammatory cytokines in cerebral ischemia in the animal model. MATERIAL AND METHODS: Nano formulation was prepared by thin-film hydration method, and characterized by particle size, zeta potential, morphology, encapsulation efficacy, and drug release in Simulated Gastric Fluid (SGF) and Simulated Intestine Fluid (SIF). Then, Wistar rats were pretreated with the drug (100 mg/kg) and nano-drug (25, 50, 75, 100 mg/kg) for 14 days. Then, on the fourteenth day, stroke induction was accomplished by Bilateral Common Carotid Artery Occlusion (BCCAO); after that, Tumor Necrosis Factor - Alpha (TNF-α), Interleukin - 1 Beta (IL-1ß), and Malondialdehyde (MDA) levels were measured in the supernatant of the whole brain, then the anti-inflammatory effect of BBR formulations was examined. RESULT AND DISCUSSION: Micelles were successfully formed with appropriate characteristics and smaller sizes than 20 nm. The Poly Dispersity Index (PDI), zeta potential, encapsulation efficacy of micelles was 0.227, - 22 mV, 81%, respectively. Also, the stability of nano micelles was higher in SGF as compared to SIF. Our outcomes of TNF-a, IL-1B, and MDA evaluation show a significant ameliorating effect of the Berberine (BBR) and BBR-loaded micelles in pretreated groups. CONCLUSION: Our experimental data show that pretreated groups in different doses (nano BBR 100, 75, 50 mg/kg, and BBR 100 mg/kg) successfully showed decreased levels of the inflammatory factors in cerebral ischemia compared with the stroke group and pretreated group with nano BBR in the dose of 25 mg/kg. Nano BBR formulation with a lower dose can be a better candidate than conventional BBR formulation to reduce oxidative and inflammatory factors in cerebral ischemia. Therefore, BBR-loaded micelle formulation could be a promising protective agent on cerebral ischemia.


Assuntos
Anti-Inflamatórios/administração & dosagem , Berberina/administração & dosagem , Isquemia Encefálica/tratamento farmacológico , Doenças das Artérias Carótidas/tratamento farmacológico , Nanopartículas/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Doenças das Artérias Carótidas/metabolismo , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Malondialdeído/metabolismo , Micelas , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
6.
Arch Acad Emerg Med ; 9(1): e50, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34405148

RESUMO

INTRODUCTION: Collagen and omega-3 fatty acids (FAs) are suggested to have anti-inflammatory, anti-oxidant, and insulin-sensitizing properties. The aim of this study was to investigate the effect of collagen hydrolysate and omega-3 FAs on inflammation and insulin resistance in patients with major burns. METHODS: In this double-blind randomized clinical trial, 66 patients with 20-45% burns were assigned to either of the three groups of collagen (40 gr/d), collagen (40 gr/d) plus fish oil (10 ml/d), or control. High-sensitivity C-reactive protein (hs-CRP), fasting blood glucose (FBG) and insulin concentrations, and homeostatic model assessment for insulin resistance (HOMA-IR) were assessed at baseline, as well as end of weeks two and three. RESULTS: Based on post-hoc analyses, hs-CRP levels were significantly lower in the collagen (p=0.026) and collagen+omega-3 (p=0.044) groups compared to the control group, at week three. However, pre- to post- (week three) changes of hs-CRP were significantly higher only in the collagen+omega-3 group compared to the control group (173.2 vs. 103.7 mg/l, p=0.024). After three weeks of the intervention, insulin (11.3 and 11.9 vs. 22.8 µIU/ml) and HOMA-IR (2.9 and 2.8 vs. 7.9) values seemed to be clinically, but not statistically, lower in both intervention groups compared to the control group. Pre- to post- (week three) values of FBG decreased significantly in the collagen (p=0.002) and collagen+omega-3 (p=0.036) groups. Insulin (p=0.008) and HOMA-IR (p=0.001) decreased significantly only in the collagen+omega-3 group at week three compared to the baseline. CONCLUSIONS: Supplementation with collagen hydrolysate and omega-3 FAs can improve hs-CRP concentration and probably insulin resistance in patients with severe burns. Omega-3 FAs had additional effects on modulating inflammation. Larger clinical trials are needed to confirm the current findings especially in terms of glucose homeostasis.

7.
J Pharm Sci ; 110(12): 3919-3928, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34418455

RESUMO

The drug delivery systems improve the efficacy of chemotherapeutics through enhanced targeting and controlled release however, biological barriers of tumor microenvironment greatly impede the penetration of nanomedicine within the tumor. We report herein the fabrication of a PEG-detachable silybin (SLB) pH-sensitive liposome decorated with TAT-peptide. For this, Acyl hydrazide-activated PEG2000 was prepared and linked with ketone-derivatized DPPE via an acid-labile hydrazone bond to form mPEG2000-HZ-DPPE. TAT peptide was conjugated with a shorter -PEG1000-DSPE spacer and post-inserted into PEGylated liposome (DPPC: mPEG2000-DSPE: Chol). To prepare nanoliposomes (around 100 nm), first, a novel method was used to prepare SLB-Soya PC (SLB-SPC) complex, then this complex was incorporated into nanoliposomes. The pH-sensitivity and shielding effect of long PEG chain on TAT peptide was investigated using DiI liposome and FACS analysis. Pre-treatment to the lowered pH enhanced cellular association of TAT-modified pH-sensitive liposome due to the cleavage of hydrazone bond and TAT exposure. Besides, TAT-modified pH-sensitive liposomes significantly reduced cell viability compared to the plain liposome. In vivo results were very promising with pH-sensitive liposome by detaching PEG moieties upon exposure to the acidic tumor microenvironment, enhancing cellular uptake, retarding tumor growth, and prolonging the survival of 4T1 breast tumor-bearing BALB/c mice. TAT modification of pH-sensitive liposome improved cancer cell association and cytotoxicity and demonstrated potential intracellular delivery upon exposure to acidic pH. However, in in vivo studies, TAT as a targeting ligand significantly decreased the therapeutic efficacy of the formulation attributed to an inefficient tumor accumulation and higher release rate in the circulation. The results of this study indicated that pH-sensitive liposome containing SLB, which was prepared with a novel method with a significant SLB loading efficiency, is very effective in the treatment of 4T1 breast tumor-bearing BALB/c mice and merits further investigation.


Assuntos
Doxorrubicina , Lipossomos , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Humanos , Concentração de Íons de Hidrogênio , Lipossomos/química , Camundongos , Camundongos Endogâmicos BALB C , Polietilenoglicóis/química , Silibina
8.
Food Sci Nutr ; 9(8): 4068-4075, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34401058

RESUMO

BACKGROUND: Curcumin, a natural polyphenolic compound, is proposed as a potential treatment option for patients with coronavirus disease by inhibiting the entry of virus to the cell, encapsulation of the virus and viral protease, as well as modulating various cellular signaling pathways. In this study, the efficacy and safety of nanocurcumin oral formulation has been evaluated in patients with mild-moderate Coronavirus disease 2019 (COVID-19) in outpatient setting. METHODS: In this triple-blind randomized placebo-controlled clinical trial, sixty mild to moderate COVID-19 patients in outpatient setting who fulfilled the inclusion criteria were randomly allocated to treatment (n = 30) group to receive oral nanocurcumin formulation (Sinacurcumin soft gel which contains 40 mg curcuminoids as nanomicelles), two soft gels twice a day after food for 2 weeks or placebo (n = 30) group. Patients' symptoms and laboratory data were assessed at baseline and during follow-up period and compared between two groups. RESULTS: All symptoms except sore throat resolved faster in the treatment group and the difference was significant for chills, cough and smell and taste disturbances. The CRP serum level was lower in the treatment group at the end of two weeks and the lymphocyte count was significantly higher in treatment group. No significant adverse reaction reported in the treatment group. CONCLUSION: Oral nanoformulation of curcumin can significantly improve recovery time in patients with mild to moderate COVID-19 in outpatient setting. Further studies with larger sample size are recommended.

9.
Life Sci ; 273: 119261, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33652036

RESUMO

AIMS: Liver cirrhosis leads to cirrhotic cardiomyopathy (CCM) and chronotropic incompetence (CI). Heat shock protein 70 (Hsp70) regulates cellular apoptosis and autophagy in stress. Teprenone modulates the Hsp70 and protects against cellular injury. Thus, we aimed to evaluate the effect of teprenone on CI in biliary cirrhotic rats. MAIN METHODS: Liver cirrhosis was induced in male Wistar rats through bile duct ligation (BDL). The chronotropic responses and QT interval were studied through electrocardiography (ECG) in sham, cirrhotic, and cirrhotic/teprenone (100 mg/kg) pre-treated groups. Brain natriuretic peptide (BNP), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and monocyte chemo-attractant protein-1 (MCP-1), and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were investigated in serum. The Hsp70, B-cell lymphoma 2 (Bcl-2), and B-cell lymphoma 2-associated X protein (Bax) expressions were quantified through real-time polymerase chain reaction (Real-time PCR). KEY FINDINGS: The chronotropic responses were decreased significantly in cirrhotic and cirrhotic/teprenone groups. The QT interval and serum BNP, TNF-α, IL-6, ALT, AST, and MCP-1 levels were increased significantly in the cirrhotic and decreased significantly, except BNP, in the cirrhotic/teprenone group. The Hsp70 and Bax expressions increased significantly in cirrhotic and decreased significantly in the cirrhotic/teprenone group while the Bcl-2 decreased significantly in cirrhotic and increased significantly in the cirrhotic/teprenone group. SIGNIFICANCE: Teprenone does not relieve the CI and BNP changes in CCM while other indices are treated. Given that CCM is a multifactorial disease and needs to target other genes and proteins concurrent with Hsp70 to relieve CCM.


Assuntos
Antiulcerosos/farmacologia , Biomarcadores/metabolismo , Cardiomiopatias/tratamento farmacológico , Diterpenos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Cirrose Hepática Biliar/complicações , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Masculino , Ratos , Ratos Wistar
10.
Sci Rep ; 10(1): 5569, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221371

RESUMO

Docetaxel (DTX) was loaded in nanoliposomes based on a new remote loading method using mannitol and acetic acid as hydration buffer. DTX loading conditions were optimized, and the final formulations were prepared according to the best parameters which were HSPC/mPEG2000-DSPE/Chol (F1), HSPC/mPEG2000-DSPE/DPPG/Chol (F2), HSPC/mPEG2000-DSPE/DSPG/Chol (F3), at molar ratios of 85/5/10, 80/5/5/10, 80/5/5/10, respectively. DTX-liposomes were found of desired size (~115 nm) and homogeneity (PDI ≤ 0.2), high drug encapsulation efficacy (34-67%) and DTX concentration, and favorable stability. Passive loaded counterparts liposomes showed three times lower encapsulation efficacy compared to the remote loaded liposomes. The drug release of remote loaded liposomes in plasma 50% was significantly more controlled and less in comparison with their passive loaded counterparts (p < 0.0001). The IC50 values of formulations were determined on MCF-7, 4T1, TUBO, NIH/3T3 cell lines. The biodistribution of iodinated docetaxel as free or liposomal form exhibited significantly greater accumulation of DTX-liposomes in tumors than that of free docetaxel due to the EPR effect. In vivo experiment with BALB/c mice bearing 4T1 or TUBO breast carcinoma tumors also showed that DTX-liposomes could significantly delay tumor growth and prolonged the survival time in comparison with control and Taxotere groups at the similar dose of 8 mg/kg. F1 and F2 formulations were stable and showed good anti-tumor activity and merit further investigation.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Docetaxel/química , Docetaxel/farmacologia , Lipossomos/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Nanopartículas/química , Tamanho da Partícula , Ratos
11.
Artif Cells Nanomed Biotechnol ; 48(1): 443-451, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32024389

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have been employed in several biomedical applications where they facilitate both diagnostic and therapeutic aims. Although the potential benefits of SPIONs with different surface chemistry and conjugated targeting ligands/proteins are considerable, complicated interactions between these nanoparticles (NPs) and cells leading to toxic impacts could limit their clinical applications. Hence, elevation of our knowledge regarding the SPION-related toxicity is necessary. Here, the present review article will consider current studies and compare the potential toxic effect of SPIONs with or without identical surface chemistries on different cell lines. It centers on cellular and molecular mechanisms underlying toxicity of SPIONs. Likewise, emphasis is being dedicated for toxicity of SPIONs in various cell lines, in vitro and animal models, in vivo.


Assuntos
Compostos Férricos/farmacocinética , Compostos Férricos/toxicidade , Nanopartículas de Magnetita/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular , Materiais Revestidos Biocompatíveis/toxicidade , Compostos Férricos/química , Humanos , Nanopartículas de Magnetita/química , Nanomedicina , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/toxicidade , Distribuição Tecidual
12.
J Biomol Struct Dyn ; 38(10): 2945-2954, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31354071

RESUMO

Studies on the anti-cancer effects of nanomaterials are a very important step in the clinical practice and treatment of cancerous tissues. Since IONPs have a high potential for cancer treatment, their anti-cancer properties can help us to resolve some of the therapeutic problems. For this purpose, in addition to synthesizing two types of IONPs including MN and MHN, Lf coating was used to increase their anti-cancer activity. MN and MHN were synthesized by hydrothermal and thermal methods, respectively, and their physicochemical properties were examined by SEM, zeta-potential, DLS, FTIR, TGA, and magnetism saturation. Molecular modelling was also done to model two steps of functionalization on the IONPs surface. In order to prove the biological activity of fabricated NPs in vitro, experimental assays of NP cytotoxicity were performed on breast cancerous cells (4T1) by MTT and ROS assays. It was found that the MN and MHN have a diameter around 24 and 33 nm, respectively. Also, the hydrodynamic radius of MN and MHN coated with Lf were 30 and 38 nm, and their zeta potential values at pH = 7.5 were -5.3 and -4.2 mV, respectively. Besides, the results of TGA, magnetism saturation and FTIR showed that Lf was successfully loaded onto NPs. Molecular modelling investigation depicted that dimethylamine moiety of the linker provides an intense reactive region for non-bonding linkages with Lf molecules. Cellular studies exhibited that Lf increased the toxicity of NPs and synthesized Lf-MNs provide the highest potency both on mortality and ROS level. This research may provide promising data for development of potential anticancer agents.Communicated by Ramaswamy H. Sarma.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Compostos Férricos , Lactoferrina , Tamanho da Partícula
13.
Int J Pharm ; 572: 118824, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31715345

RESUMO

In this study, we formulated silymarin-HSA nanoplex and assayed its ability to reduce LPS-induced toxicity in vitro and in vivo. Silymarin molecules were encapsulated into HSA nanoplex and the loading efficiency and characterization of fabricated nanoplex were performed by using HPLC, TEM, SEM, DLS, FTIR analysis, and theoretical studies. Afterwards, their protective effect against LPS (20 µg/ml) -induced toxicity in SH-SY5Y cells was investigated by MTT, ROS, and apoptosis assays. For in vivo experiments, rats were pre-treated with either silymarin or silymarin -HSA nanoplex (200 mg/kg) orally for 3 days and at third day received LPS by IP at a dose of 0.5 mg/kg, 150 min before scarification followed by SOD and CAT activity assay. The formulation of silymarin-HSA nanoplex showed a spherical shape with an average diameter between 50 nm and 150 nm, hydrodynamic radius of 188.3 nm, zeta potential of -26.6 mV, and a drug loading of 97.3%. In LPS-treated cells, pretreatments with silymarin-HSA noncomplex recovered the cell viability and decreased the ROS level and corresponding apoptosis more significantly than free silymarin. In rats, it was also depicted that, silymarin-HSA noncomplex can increase the SOD and CAT activity in brain tissue at LPS-triggered oxidative stress model more significantly than the free counterpart. Therefore, nanoformulation of silymarin improved its capability to reduce LPS-induced oxidative stress by restoring cell viability and elevation of SOD and CAT activity in vitro and in vivo, respectively. In conclusion, formulation of silymarin may hold a great promise in the development of antioxidant agents.


Assuntos
Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Albumina Sérica Humana/química , Silimarina/farmacologia , Animais , Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lipopolissacarídeos/toxicidade , Masculino , Neuroblastoma/patologia , Tamanho da Partícula , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Silimarina/administração & dosagem
14.
Mater Sci Eng C Mater Biol Appl ; 101: 148-158, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029307

RESUMO

Recent studies suggest that nanotopography can trigger colocalization of integrins and bone morphogenetic protein 2 (BMP2) receptors (e.g., BMPR1A), thereby leading to osteogenesis. In this study, the bone marrow homing peptide 1 (BMHP1) motif was bound to a self-assembling peptide core to form a hydrogel-based nanofiber (R-BMHP1). The docking and molecular dynamic study revealed that the R-BMHP1 sequence induced a stronger electrostatic interaction than BMP2 through arginines in the RADA core sequence and through lysine24 in the BMHP1 motif with BMPR1A. Notably, decrease of polar solvation binding energy will enhance the total binding energy and increases bone regeneration even more than BMP2 The enhanced osteogenesis and bone repair potential of R-BMHP1 nanofiber might be related to its chemical interaction with BMPR1A, which triggered downstream signal transduction through osteogenic genes overexpression in osteo-differentiated mesenchymal stem cells (MSCs), as well as implanted critical-sized bone defects in rats. Following that, calcium deposition occurred by osteoblast-like cells, ALP activity increased in osteodifferentiation MSCs and rat serum, and calcium density improved in bone defects (X-ray). The nanofiber was biocompatible and enhanced the cell viability of MSCs, without multinuclear cell infiltration into the defect site. Taking everything into account, not only does nanotopography induce osteogenesis through colocalization of BMPRs and integrins, but also R-BMHP1 nanofibers (considering their chemical structure) induce cell proliferation, osteogenesis, and bone repair through strong electrostatic interaction with BMPR1A and downstream signaling. The entire outcome of this study manifests the plausibility of R-BMHP1 for spine and spinal cord injury repair.


Assuntos
Proteína Morfogenética Óssea 2/química , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/química , Nanofibras/química , Peptídeos/química , Eletricidade Estática , Fosfatase Alcalina/metabolismo , Motivos de Aminoácidos , Animais , Biomarcadores/metabolismo , Osso e Ossos/patologia , Membrana Celular/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Óxido Nítrico/biossíntese , Osteogênese , Ratos , Alicerces Teciduais/química
15.
Inflammopharmacology ; 27(6): 1275-1283, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30903350

RESUMO

AIM: The aim of the present study was to evaluate the anti-inflammatory effect of thymol in acetic acid-induced rat colitis through inhibiting the NF-κB signaling pathway. METHODS: Colitis was induced by intra-rectal administration of 2 mL of diluted acetic acid (4%) solution using a flexible plastic rubber catheter in Wistar rats. Colitis was induced on the first day and all treatments were applied 5 days after the induction of colitis. Thymol was dissolved in 0.2% tween 80 in saline and administered orally at doses of 10, 30, and 100 mg/kg per day. Macroscopic and histopathologic investigations were done. The expression of myeloperoxidase (MPO) and tumor necrosis factor-α (TNF-α) was determined by immunohistochemistry (IHC) assay. The protein expression level of pNF-κB p65 was measured by the Western blot technique. RESULTS: Treatment with thymol reduced mucosal and histological damages compared to the acetic acid group. Our results showed that thymol markedly inhibited the production of MPO and TNF-α in the colon tissue of the acetic acid-induced group. In addition, thymol decreased acetic acid-induced up-regulation of pNFκB p65 protein. CONCLUSIONS: The results of our study suggest that thymol exerts an anti-inflammatory effect in acetic acid-induced rat colitis by inhibiting the NF-κB signaling pathway and downregulating TNF-α and MPO expressions.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Timol/farmacologia , Ácido Acético/farmacologia , Animais , Colite/metabolismo , Colite/patologia , Masculino , NF-kappa B/fisiologia , Peroxidase/análise , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/análise
16.
Nutr Metab (Lond) ; 16: 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30705687

RESUMO

BACKGROUND: Since lifestyle changes are main therapies for non-alcoholic fatty liver disease (NAFLD), changing dietary components (nutritional or bioactive) may play a parallel important role. Few studies have assessed the effects of curcumin on NAFLD (mainly antioxidant and anti-inflammatory effects). We aimed to determine the effects of nano-curcumin (NC) on overweight/obese NAFLD patients by assessing glucose, lipids, inflammation, insulin resistance, and liver function indices, especially through nesfatin. METHODS: This double-blind, randomized, placebo-controlled clinical trial was conducted in the Oil Company Central Hospital, Tehran. 84 overweight/obese patients with NAFLD diagnosed using ultrasonography were recruited according to the eligibility criteria (age 25-50 yrs., body mass index [BMI] 25-35 kg/m2). The patients were randomly divided into two equal NC (n = 42) and placebo (n = 42) groups. Interventions were two 40 mg capsules/day after meals for 3 months. Lifestyle changes were advised. A general questionnaire, a 24-h food recall (at the beginning, middle and end), and the short-form international physical activity questionnaire (at the beginning and end) were completed. Also, blood pressure, fatty liver degree, anthropometrics, fasting blood sugar (FBS) and insulin (FBI), glycated hemoglobin (HbA1c), homeostasis model assessment-insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), tumor necrosis factor-alpha (TNF-α), high sensitive c-reactive protein (hs-CRP), interleukin-6 (IL-6), liver transaminases, and nesfatin were determined at the beginning and end. RESULTS: NC compared with placebo significantly increased HDL, QUICKI, and nesfatin and decreased fatty liver degree, liver transaminases, waist circumference (WC), FBS, FBI, HbA1c, TG, TC, LDL, HOMA-IR, TNF-α, hs-CRP, and IL-6 (P < 0.05). The mean changes in weight, BMI, body composition (BC), and blood pressure were not significant (P > 0.05). After adjustment for confounders, the changes were similar to the unadjusted model. CONCLUSION: NC supplementation in overweight/obese NAFLD patients improved glucose indices, lipids, inflammation, WC, nesfatin, liver transaminases, and fatty liver degree. Accordingly, the proposed mechanism for ameliorating NAFLD with NC was approved by the increased serum nesfatin and likely consequent improvements in inflammation, lipids, and glucose profile. Further trials of nano-curcumin's effects are suggested. TRIAL REGISTRATION: Iranian Registry of Clinical Trials, IRCT2016071915536N3. Registered 2016-08-02.

17.
J Cell Physiol ; 234(8): 14246-14258, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30656682

RESUMO

Two of the most problematic orthopedic and neurosurgeon visits are associated with spine and craniofacial fractures. Therefore, more attention needs to be paid to finding a medicine to repair these fractures. Amongst the most mysterious herbs, Aloe vera stands out. In the present study, the ameliorating function of A. vera on osteogenesis was studied in vitro and in vivo. Osteoblast-like cells were exposed to A. vera, followed by analysis of cell viability, lactate dehydrogenase release, and intracellular reactive oxygen species (ROS) production. The results showed an enhanced cell biocompatibility in a dose-dependent manner due to attenuated intracellular ROS production. Furthermore, a docking study indicated that the strong affinity of A. vera constituents to type I bone morphogenic protein receptor (BMPR1A) without the involvement of the BMPR1A chain B. The induction of osteogenesis prompts extracellular calcium deposition by osteoblasts, which affirms successful in vitro bone regeneration. However, injection of A. vera in rats with critical size calvarial defects induced Runx2, alkaline phosphatase (ALP), OCN, and BMP2 genes overexpression, which led to the formation of victorious bone with enhanced bone density and ALP activity. It is worthy to note that Aloin has the highest affinity to BMPR1A, whereas there are no reports regarding the impact of Aloenin, Aloesin, and γ-sitosterol on osteogenesis. Furthermore, some of them have antitumor potency, and it might be proposed that they are considered as a bone substitute in the osteotomy site of osteosarcoma with the aim of bone recovery and suppression of osteosarcoma. The whole consequences of this investigation manifests the plausibility of using A. vera as an antioxidant and osteoconductive substitute.


Assuntos
Aloe/química , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Osteogênese/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Animais , Antioxidantes , Proteína Morfogenética Óssea 2/genética , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/genética , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cromonas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glucosídeos , Humanos , L-Lactato Desidrogenase/genética , Osteoblastos/efeitos dos fármacos , Osteogênese/genética , Compostos Fitoquímicos/química , Ratos , Espécies Reativas de Oxigênio/metabolismo
18.
Inflammopharmacology ; 27(2): 361-371, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30143913

RESUMO

AIM: The aim of the present study is to investigate the anti-inflammatory effect of melatonin in trinitrobenzene sulfonic acid (TNBS)-induced rat colitis through the inhibition of Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signalling pathway and activation of melatonin receptor. METHODS: Colitis was induced in Wistar rats by administration of 100 mg/kg TNBS dissolved in 0.25 ml of 50% ethanol solution using a flexible plastic rubber catheter into the colon via the anus. This resulted in incidence of colitis on the first day, and all treatments were conducted for 10 days after induction of colitis. Melatonin was administered intraperitoneally (i.p.) at doses of 1, 5, and 10 mg/kg/day. Luzindole (non-selective MT1/MT2 receptor antagonist) was administered i.p. at dose of 5 mg/kg/day 15 min prior to melatonin injection. During the experiment, animals were monitored for the appearance of diarrhoea, body weight loss, and rectal bleeding. Myeloid peroxidase enzyme and tumour necrosis factor-α (TNF-α) activities were detected by immunohistochemistry. The protein expression level of TLR4, myeloid differentiation factor 88 (MyD88), NF-κB p65, and inhibitor of kappa B (I-κB) were detected by western blotting analysis. RESULTS: Treatment with melatonin improved weight loss, mucosal, and histological damage compared with TNBS group. In addition, melatonin decreased TNBS-induced up-regulation of TLR4, MyD88, and NF-κB p65, and increased down-regulation of I-κB proteins. On the other hand, the administration of luzindole resulted in the inhibition of melatonin effects. CONCLUSIONS: It seems that the inhibition of TLR4/NF-κB signalling pathway may mediate the anti-inflammatory effects of melatonin in TNBS-induced rat colitis.


Assuntos
Colite/tratamento farmacológico , Melatonina/farmacologia , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Receptores de Melatonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Regulação para Baixo/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Ratos , Ratos Wistar , Ácido Trinitrobenzenossulfônico/farmacologia , Regulação para Cima/efeitos dos fármacos
19.
Biosens Bioelectron ; 126: 773-784, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30554099

RESUMO

Cancer is one of the most important causes of mortality in the world, which can be severely reduced by early detection to avoid future problems in the field of economics and mental health. Hence, electrochemical nanobiosensors as portable devices for rapid detection of  cancer biomarkers, have found an important place in clinical medicine for diagnosis, managements or cancer screening. Although, these biosensors have been receiving attention in the recent years, their principles are unchanged. By progress in nanotechnology, a great potential has been giving to nanobiosensors. Applications of a wide variety of nanomaterials in developing electrochemical biosensors, led to the production of potential nanobiosensors. Due to the high electrical conductivity, and increased surface area relative to the volume along with more repeatability, the application of NPs in electrochemical biosensors has been developed. Therefore, in this review, we discussed the impact of nanomaterials on the accuracy of biosensors in early cancer detection such as lung, prostate, breast, and other cancers. However, the modification of electrode performance by nanomaterials is relatively complicated, which causes limitation for some nanomaterials to be used inbiosensor applications. Indeed, the construction of electrodes based on nanomaterial requires a simple, reliable and inexpensive route to increase the sensitivity and reproducibility. Thus, the aim of this study can be defined as determining the detection limit of electrochemical nanobiosensors as well as introducing the challenges of fabricating and designing electrochemical nanobiosensors based on nanomaterials and their evaluations in the future medical setting.


Assuntos
Biomarcadores Tumorais/isolamento & purificação , Técnicas Biossensoriais , Nanotecnologia , Neoplasias/diagnóstico , Técnicas Eletroquímicas , Humanos , Nanoestruturas/química
20.
Artif Cells Nanomed Biotechnol ; 46(7): 1452-1462, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28891351

RESUMO

Hyperthermia treatment of cancerous cells has been recently developed drastically with the help of nanostructures. Heating of gold nanoparticles in non-invasive radiofrequency electric field (RF-EF) is a promising and unique technique for cancer hyperthermia. However, because of differences between particles (i.e. their surface chemistry and dispersion medium) and between RF-EF sources, the research community has not reached a consensus yet. Here, we report the results of investigations on heating of gold nanoparticles and gold nanorods under RF-EF and feasibility of in-vitro cancer hyperthermia. The heating experiments were performed to investigate the role of particle shape and surface chemistry (CTAB, citrate and PEG molecules). In-vitro hyperthermia was performed on human pancreatic cancer cell (MIA Paca-2) with PEG-coated GNPs and GNRs at concentrations that were found non-toxic based on the results of cytotoxicity assay. Application of RF-EF on cells treated with PEG-GNPs and PEG-GNRs proved highly effective in killing cells.


Assuntos
Eletricidade , Ouro/química , Hipertermia Induzida/métodos , Nanopartículas Metálicas/química , Terapia por Radiofrequência , Linhagem Celular Tumoral , Cetrimônio , Compostos de Cetrimônio/química , Humanos , Nanotubos/química , Polietilenoglicóis/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA