Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 12(568)2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148626

RESUMO

The development of immunotherapeutic monoclonal antibodies targeting checkpoint inhibitory receptors, such as programmed cell death 1 (PD-1), or their ligands, such as PD-L1, has transformed the oncology landscape. However, durable tumor regression is limited to a minority of patients. Therefore, combining immunotherapies with those targeting checkpoint inhibitory receptors is a promising strategy to bolster antitumor responses and improve response rates. Natural killer (NK) cells have the potential to augment checkpoint inhibition therapies, such as PD-L1/PD-1 blockade, because NK cells mediate both direct tumor lysis and T cell activation and recruitment. However, sourcing donor-derived NK cells for adoptive cell therapy has been limited by both cell number and quality. Thus, we developed a robust and efficient manufacturing system for the differentiation and expansion of high-quality NK cells derived from induced pluripotent stem cells (iPSCs). iPSC-derived NK (iNK) cells produced inflammatory cytokines and exerted strong cytotoxicity against an array of hematologic and solid tumors. Furthermore, we showed that iNK cells recruit T cells and cooperate with T cells and anti-PD-1 antibody, further enhancing inflammatory cytokine production and tumor lysis. Because the iNK cell derivation process uses a renewable starting material and enables the manufacturing of large numbers of doses from a single manufacture, iNK cells represent an "off-the-shelf" source of cells for immunotherapy with the capacity to target tumors and engage the adaptive arm of the immune system to make a "cold" tumor "hot" by promoting the influx of activated T cells to augment checkpoint inhibitor therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Humanos , Células Matadoras Naturais , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1 , Linfócitos T
2.
Cancer Res ; 77(20): 5664-5675, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28790065

RESUMO

Maturation of human natural killer (NK) cells as defined by accumulation of cell-surface expression of CD57 is associated with increased cytotoxic character and TNF and IFNγ production upon target-cell recognition. Notably, multiple studies point to a unique role for CD57+ NK cells in cancer immunosurveillance, yet there is scant information about how they mature. In this study, we show that pharmacologic inhibition of GSK3 kinase in peripheral blood NK cells expanded ex vivo with IL15 greatly enhances CD57 upregulation and late-stage maturation. GSK3 inhibition elevated the expression of several transcription factors associated with late-stage NK-cell maturation including T-BET, ZEB2, and BLIMP-1 without affecting viability or proliferation. When exposed to human cancer cells, NK cell expanded ex vivo in the presence of a GSK3 inhibitor exhibited significantly higher production of TNF and IFNγ, elevated natural cytotoxicity, and increased antibody-dependent cellular cytotoxicity. In an established mouse xenograft model of ovarian cancer, adoptive transfer of NK cells conditioned in the same way also displayed more robust and durable tumor control. Our findings show how GSK3 kinase inhibition can greatly enhance the mature character of NK cells most desired for effective cancer immunotherapy. Cancer Res; 77(20); 5664-75. ©2017 AACR.


Assuntos
Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células A549 , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Feminino , Quinase 3 da Glicogênio Sintase/imunologia , Humanos , Interleucina-15/farmacologia , Células K562 , Células Matadoras Naturais/enzimologia , Camundongos , Camundongos Endogâmicos NOD , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Piridinas/farmacologia , Pirimidinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Blood ; 122(17): 3074-81, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23996087

RESUMO

Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) for use in allogeneic transplantation. Key advantages of UCB are rapid availability and less stringent requirements for HLA matching. However, UCB contains an inherently limited HSC count, which is associated with delayed time to engraftment, high graft failure rates, and early mortality. 16,16-Dimethyl prostaglandin E2 (dmPGE2) was previously identified to be a critical regulator of HSC homeostasis, and we hypothesized that brief ex vivo modulation with dmPGE2 could improve patient outcomes by increasing the "effective dose" of HSCs. Molecular profiling approaches were used to determine the optimal ex vivo modulation conditions (temperature, time, concentration, and media) for use in the clinical setting. A phase 1 trial was performed to evaluate the safety and therapeutic potential of ex vivo modulation of a single UCB unit using dmPGE2 before reduced-intensity, double UCB transplantation. Results from this study demonstrated clear safety with durable, multilineage engraftment of dmPGE2-treated UCB units. We observed encouraging trends in efficacy, with accelerated neutrophil recovery (17.5 vs 21 days, P = .045), coupled with preferential, long-term engraftment of the dmPGE2-treated UCB unit in 10 of 12 treated participants.


Assuntos
16,16-Dimetilprostaglandina E2/farmacologia , Plaquetas/efeitos dos fármacos , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Sangue Fetal/efeitos dos fármacos , Sobrevivência de Enxerto/imunologia , Neoplasias Hematológicas/terapia , Adulto , Idoso , Plaquetas/citologia , Plaquetas/imunologia , Células Cultivadas , Criopreservação , Feminino , Sangue Fetal/citologia , Sangue Fetal/imunologia , Sangue Fetal/transplante , Perfilação da Expressão Gênica , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Quimeras de Transplante , Transplante Homólogo , Resultado do Tratamento
4.
Sci Rep ; 3: 1179, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23378912

RESUMO

hiPSC derivation and selection remains inefficient; with selection of high quality clones dependent on extensive characterization which is not amenable to high-throughput (HTP) approaches. We recently described the use of a cocktail of small molecules to enhance hiPSC survival and stability in single cell culture and the use of flow cytometry cell sorting in the HTP-derivation of hiPSCs. Here we report an enhanced protocol for the isolation of bona fide hiPSCs in FACS-based selection using an optimized combination of cell surface markers including CD30. Depletion of CD30(+) cells from reprogramming cultures almost completely abolished the NANOG and OCT4 positive sub-population, suggesting it is a pivotal marker of pluripotent cells. Combining CD30 to SSEA4 and TRA-1-81 in FACS greatly enhanced specificity and efficiency of hiPSC selection and derivation. The current method allows for the efficient and automated, prospective isolation of high-quality hiPSC from the reprogramming cell milieu.


Assuntos
Separação Celular , Citometria de Fluxo , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Antígenos de Superfície/metabolismo , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariotipagem , Antígeno Ki-1/genética , Antígeno Ki-1/metabolismo , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo , Antígenos Embrionários Estágio-Específicos/metabolismo , Teratoma/patologia
5.
Proc Natl Acad Sci U S A ; 108(11): 4370-5, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21368169

RESUMO

A single hematopoietic stem cell (HSC) can generate a clone, consisting of daughter HSCs and differentiated progeny, which can sustain the hematopoietic system of multiple hosts for a long time. At the same time, this massive expansion potential must be restrained to prevent abnormal, leukemic proliferation. We used an interdisciplinary approach, combining transplantation assays with mathematical and computational methods, to systematically analyze the proliferative potential of individual HSCs. We show that all HSC clones examined have an intrinsically limited life span. Daughter HSCs within a clone behaved synchronously in transplantation assays and eventually exhausted at the same time. These results indicate that each HSC is programmed to have a finite life span. This program and the memory of the life span of the mother HSC are inherited by all daughter HSCs. In contrast, there was extensive heterogeneity in life spans between individual HSC clones, ranging from 10 to almost 60 mo. We used model-based machine learning to develop a mathematical model that efficiently predicts the life spans of individual HSC clones on the basis of a few initial measurements of donor type cells in blood. Computer simulations predict that the probability of self-renewal decays with a logistic kinetic over the life span of a normal HSC clone. Other decay functions lead to either graft failure or leukemic proliferation. We propose that dynamical fate probabilities are a crucial condition that leads to self-limiting clonal proliferation.


Assuntos
Senescência Celular , Células-Tronco Hematopoéticas/citologia , Animais , Proliferação de Células , Células Clonais , Simulação por Computador , Cinética , Camundongos , Modelos Imunológicos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA