Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(10)2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39456194

RESUMO

Telomeres, repetitive sequences located at the extremities of chromosomes, play a pivotal role in sustaining chromosomal stability. Telomerase is a complex enzyme that can elongate telomeres by appending telomeric repeats to chromosome ends and acts as a critical factor in telomere dynamics. The gradual shortening of telomeres over time is a hallmark of cellular senescence and cellular death. Notably, telomere shortening appears to result from the complex interplay of two primary mechanisms: telomere shelterin complexes and telomerase activity. The intricate interplay of genetic, environmental, and lifestyle influences can perturb telomere replication, incite oxidative stress damage, and modulate telomerase activity, collectively resulting in shifts in telomere length. This age-related process of telomere shortening plays a considerable role in various chronic inflammatory and oxidative stress conditions, including cancer, cardiovascular disease, and rheumatic disease. Existing evidence has shown that abnormal telomere shortening or telomerase activity abnormalities are present in the pathophysiological processes of most rheumatic diseases, including different disease stages and cell types. The impact of telomere shortening on rheumatic diseases is multifaceted. This review summarizes the current understanding of the link between telomere length and rheumatic diseases in clinical patients and examines probable telomere shortening in peripheral blood mononuclear cells and histiocytes. Therefore, understanding the intricate interaction between telomere shortening and various rheumatic diseases will help in designing personalized treatment and control measures for rheumatic disease.


Assuntos
Doenças Reumáticas , Telomerase , Encurtamento do Telômero , Telômero , Humanos , Doenças Reumáticas/genética , Doenças Reumáticas/metabolismo , Encurtamento do Telômero/genética , Telomerase/metabolismo , Telomerase/genética , Telômero/metabolismo , Telômero/genética , Estresse Oxidativo/genética , Animais
2.
Front Immunol ; 15: 1274474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361941

RESUMO

Metastatic disease, a leading and lethal indication of deaths associated with tumors, results from the dissemination of metastatic tumor cells from the site of primary origin to a distant organ. Dispersion of metastatic cells during the development of tumors at distant organs leads to failure to comply with conventional treatments, ultimately instigating abrupt tissue homeostasis and organ failure. Increasing evidence indicates that the tumor microenvironment (TME) is a crucial factor in cancer progression and the process of metastatic tumor development at secondary sites. TME comprises several factors contributing to the initiation and progression of the metastatic cascade. Among these, various cell types in TME, such as mesenchymal stem cells (MSCs), lymphatic endothelial cells (LECs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), T cells, and tumor-associated macrophages (TAMs), are significant players participating in cancer metastasis. Besides, various other factors, such as extracellular matrix (ECM), gut microbiota, circadian rhythm, and hypoxia, also shape the TME and impact the metastatic cascade. A thorough understanding of the functions of TME components in tumor progression and metastasis is necessary to discover new therapeutic strategies targeting the metastatic tumor cells and TME. Therefore, we reviewed these pivotal TME components and highlighted the background knowledge on how these cell types and disrupted components of TME influence the metastatic cascade and establish the premetastatic niche. This review will help researchers identify these altered components' molecular patterns and design an optimized, targeted therapy to treat solid tumors and restrict metastatic cascade.


Assuntos
Células Supressoras Mieloides , Neoplasias , Humanos , Células Endoteliais/patologia , Neoplasias/patologia , Microambiente Tumoral , Células Supressoras Mieloides/patologia
3.
Front Immunol ; 14: 1280741, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936703

RESUMO

A healthy immune system is pivotal for the hosts to resist external pathogens and maintain homeostasis; however, the immunosuppressive tumor microenvironment (TME) damages the anti-tumor immunity and promotes tumor progression, invasion, and metastasis. Recently, many studies have found that Foxp3+ regulatory T (Treg) cells are the major immunosuppressive cells that facilitate the formation of TME by promoting the development of various tumor-associated cells and suppressing the activity of effector immune cells. Considering the role of Tregs in tumor progression, it is pivotal to identify new therapeutic drugs to target and deplete Tregs in tumors. Although several studies have developed strategies for targeted deletion of Treg to reduce the TME and support the accumulation of effector T cells in tumors, Treg-targeted therapy systematically affects the Treg population and may lead to the progression of autoimmune diseases. It has been understood that, nevertheless, in disease conditions, Foxp3 undergoes several definite post-translational modifications (PTMs), including acetylation, glycosylation, phosphorylation, ubiquitylation, and methylation. These PTMs not only elevate or mitigate the transcriptional activity of Foxp3 but also affect the stability and immunosuppressive function of Tregs. Various studies have shown that pharmacological targeting of enzymes involved in PTMs can significantly influence the PTMs of Foxp3; thus, it may influence the progression of cancers and/or autoimmune diseases. Overall, this review will help researchers to understand the advances in the immune-suppressive mechanisms of Tregs, the post-translational regulations of Foxp3, and the potential therapeutic targets and strategies to target the Tregs in TME to improve anti-tumor immunity.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Linfócitos T Reguladores , Terapia de Imunossupressão , Processamento de Proteína Pós-Traducional , Doenças Autoimunes/patologia , Microambiente Tumoral
4.
Eur J Immunol ; 53(12): e2250182, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37615189

RESUMO

Hypoxia-inducible factor 1 alpha (HIF1α), under hypoxic conditions, is known to play an oxygen sensor stabilizing role by exerting context- and cell-dependent stimulatory and inhibitory functions in immune cells. Nevertheless, how HIF1α regulates T cell differentiation and functions in tumor settings has not been elucidated. Herein, we demonstrated that T-cell-specific deletion of HIF1α improves the inflammatory potential and memory phenotype of CD8+ T cells. We validated that T cell-specific HIF1α ablation reduced the B16 melanomas development with the indication of ameliorated antitumor immune response with enhanced IFN-γ+ CD8+ T cells despite the increase in the Foxp3+ regulatory T-cell population. This was further verified by treating tumor-bearing mice with a HIF1α inhibitor. Results indicated that HIF1α inhibitor also recapitulates HIF1α ablation effects by declining tumor growth and enhancing the memory and inflammatory potential of CD8+ T cells. Furthermore, a combination of Treg inhibitor with HIF1α inhibitor can substantially reduce tumor size. Collectively, these findings highlight the notable roles of HIF1α in distinct CD8+ T-cell subsets. This study suggests the significant implications for enhancing the potential of T cell-based antitumor immunity by combining HIF1α and Tregs inhibitors.


Assuntos
Melanoma Experimental , Linfócitos T Reguladores , Camundongos , Animais , Linfócitos T CD8-Positivos , Subpopulações de Linfócitos T , Melanoma Experimental/terapia , Imunidade
5.
Front Cell Dev Biol ; 10: 949603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912096

RESUMO

The majority of chronic hepatic diseases are caused by nutritional imbalance. These nutritional inequities include excessive intake of alcohol and fat, which causes alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), respectively. The pathogenesis of hepatic diseases is mainly dependent on oxidative stress, autophagy, DNA damage, and gut microbiota and their metabolites. These factors influence the normal physiology of the liver and impact the hepatic microenvironment. The hepatic microenvironment contains several immune cells and inflammatory cytokines which interact with each other and contribute to the progression of chronic hepatic diseases. Among these immune cells, Foxp3+ CD4+ regulatory T cells (Tregs) are the crucial subset of CD4+ T cells that create an immunosuppressive environment. This review emphasizes the function of Tregs in the pathogenesis of ALD and NAFLD and their role in the progression of NAFLD-associated hepatocellular carcinoma (HCC). Briefly, Tregs establish an immunosuppressive landscape in the liver by interacting with the innate immune cells and gut microbiota and their metabolites. Meanwhile, with the advancement of steatosis, these Tregs inhibit the proliferation, activation and functions of other cytotoxic T cells and support the progression of simple steatosis to HCC. Briefly, it can be suggested that targeting Tregs can act as a favourable prognostic indicator by modulating steatosis and insulin resistance during the pathogenesis of hepatic steatosis and NAFLD-associated HCC.

6.
Front Immunol ; 13: 1057555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601108

RESUMO

The aryl hydrocarbon receptor (AhR) is a widely studied ligand-activated cytosolic transcriptional factor that has been associated with the initiation and progression of various diseases, including autoimmune diseases, cancers, metabolic syndromes, and allergies. Generally, AhR responds and binds to environmental toxins/ligands, dietary ligands, and allergens to regulate toxicological, biological, cellular responses. In a canonical signaling manner, activation of AhR is responsible for the increase in cytochrome P450 enzymes which help individuals to degrade and metabolize these environmental toxins and ligands. However, canonical signaling cannot be applied to all the effects mediated by AhR. Recent findings indicate that activation of AhR signaling also interacts with some non-canonical factors like Kruppel-like-factor-6 (KLF6) or estrogen-receptor-alpha (Erα) to affect the expression of downstream genes. Meanwhile, enormous research has been conducted to evaluate the effect of AhR signaling on innate and adaptive immunity. It has been shown that AhR exerts numerous effects on mast cells, B cells, macrophages, antigen-presenting cells (APCs), Th1/Th2 cell balance, Th17, and regulatory T cells, thus, playing a significant role in allergens-induced diseases. This review discussed how AhR mediates immune responses in allergic diseases. Meanwhile, we believe that understanding the role of AhR in immune responses will enhance our knowledge of AhR-mediated immune regulation in allergic diseases. Also, it will help researchers to understand the role of AhR in regulating immune responses in autoimmune diseases, cancers, metabolic syndromes, and infectious diseases.


Assuntos
Doenças Autoimunes , Hipersensibilidade , Síndrome Metabólica , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo , Alérgenos , Imunidade
7.
Front Pharmacol ; 12: 693796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34588979

RESUMO

Objectives: This meta-analysis was conducted to evaluate the effects of hydroxychloroquine (HCQ) in the treatment of primary Sjögren's syndrome (pSS). Methods: Nine databases were searched for data collection. We used clinical features, including involvement in superficial tissues and visceral systems, and experimental findings, including Schirmer's test, unstimulated salivary flow rate (uSFR), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and immunoglobulins (IgG, IgM and IgA) as major outcome measures. The Downs and Black quality assessment tool and RevMan 5.3 were used to assess the methodological quality and statistical analysis, respectively. Results: Thirteen studies with pSS patients, consisting of two randomized controlled studies, four retrospective studies and seven prospective studies were analyzed. Results showed that HCQ treatment significantly improved the oral symptoms of pSS patients compared to non-HCQ treatment (P = 0.003). Similar trends favoring HCQ treatment were observed for uSFR (p = 0.05), CRP (p = 0.0008), ESR (p < 0.00001), IgM (p = 0.007) and IgA (p = 0.05). However, no significant improvement was observed in other clinical features, including ocular involvement, fatigue, articular lesions, pulmonary, neurological and lymphoproliferative symptoms, renal organs and other experimental parameters in the HCQ treatment group compared to the non-HCQ treatment group. Conclusion: HCQ treatment showed moderate efficacy to improve oral symptoms, uSFR, ESR, CRP, IgM and IgA. However, HCQ could not alleviate organ-specific systemic involvement. Systematic Review Registration:We have registered on the PROSPERO [https://www.crd.york.ac.uk/PROSPERO/], and the registration number is identifier [CRD42020205624].

8.
J Cell Mol Med ; 25(8): 4073-4087, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33689215

RESUMO

Persistent hepatic damage and chronic inflammation in liver activate the quiescent hepatic stellate cells (HSCs) and cause hepatic fibrosis (HF). Several microRNAs regulate the activation and proliferation of HSCs, thereby playing a critical role in HF progression. Previous studies have reported that miR-188-5p is dysregulated during the process of HF. However, the role of miR-188-5p in HF remains unclear. This study investigated the potential role of miR-188-5p in HSCs and HF. Firstly, we validated the miR-188-5p expression in primary cells isolated from liver of carbon tetrachloride (CCl4 )-induced mice, TGF-ß1-induced LX-2 cells, livers from 6-month high-fat diet (HFD)-induced rat and 4-month HFD-induced mice NASH models, and human non-alcoholic fatty liver disease (NAFLD) patients. Furthermore, we used miR-188-5p inhibitors to investigate the therapeutic effects of miR-188-5p inhibition in the HFD + CCl4 induced in vivo model and the potential role of miR-188-5p in the activation and proliferation of HSCs. This present study reported that miR-188-5p expression is significantly increased in the human NAFLD, HSCs isolated from liver of CCl4 induced mice, and in vitro and in vivo models of HF. Mimicking the miR-188-5p resulted in the up-regulation of HSC activation and proliferation by directly targeting the phosphatase and tensin homolog (PTEN). Moreover, inhibition of miR-188-5p reduced the activation and proliferation markers of HSCs through PTEN/AKT pathway. Additionally, in vivo inhibition of miR-188-5p suppressed the HF parameters, pro-fibrotic and pro-inflammatory genes, and fibrosis. Collectively, our results uncover the pro-fibrotic role of miR-188-5p. Furthermore, we demonstrated that miR-188-5p inhibition decreases the severity of HF by reducing the activation and proliferation of HSCs through PTEN/AKT pathway.


Assuntos
Células Estreladas do Fígado/citologia , Cirrose Hepática/prevenção & controle , MicroRNAs/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adulto , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos
9.
ACS Omega ; 5(33): 20800-20809, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32875214

RESUMO

Epigallocatechin gallate (EGCG) has been regarded as a protective bioactive polyphenol in green tea against nonalcoholic steatohepatitis (NASH), but the mechanism remains poorly deciphered. Herein, we assessed the role and mechanism of EGCG on gut microbiota and the metabolism in NASH development. Forty-eight male C57BL/6J mice were fed with either a methionine-choline-sufficient diet or a methionine-choline-deficient (MCD) diet with or without EGCG administration for 4 weeks. Liver injury, inflammation, lipid accumulation, and iron overload were examined. 16S ribosomal RNA sequencing was used to detect the fecal microbiome. In our research, we observed that EGCG notably improved MCD-diet-derived gut microbiota dysbiosis, as proved by a distinctively clustered separation from that of the MCD group and by the decrease of the Oxalobacter, Oscillibacter, Coprococcus_1, and Desulfovibrio genera and enrichment of norank_f__Bacteroidales_S24_7_group, Alloprevotella, and Bacteroides. Spearman-correlation heatmap analysis indicated that Bacteroides and Alloprevotella induced by EGCG were strongly negatively correlated with lipid accumulation. Functional enzymes of the gut microbiome were predicted by PICRUSt based on the operation classification unit. The results revealed that 1468 enzymes were involved in various metabolic pathways, and 371 enzymes showed distinct changes between untreated and EGCG-treated mice. Long-chain-fatty-acid-CoA ligase ACSBG played a distinct role in fatty acid metabolism and ferroptosis and was significantly negatively correlated with Bacteroides. Altogether, the salutary effect of EGCG on NASH might be via shifting gut flora and certain enzymes from genera. Our study thus takes a step toward NASH prevention and therapy.

10.
Free Radic Biol Med ; 159: 150-163, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32745771

RESUMO

Programmed cell death factor 4 (PDCD4) is originally described as a tumor suppressor gene that exerts antineoplastic effects by promoting apoptosis and inhibiting tumor cell proliferation, invasion, and metastasis. Several investigations have probed the aberrant expression of PDCD4 with the progression of metabolic diseases, such as polycystic ovary syndrome (PCOS), obesity, diabetes, and atherosclerosis. It has been ascertained that PDCD4 causes glucose and lipid metabolism disorders, insulin resistance, oxidative stress, chronic inflammatory response, and gut flora disorders to regulate the progression of metabolic diseases. This review aims to summarize the latest researches to uncover the structure, expression regulation, and biological functions of PDCD4 and to elucidate the regulatory mechanism of the development of tumors and metabolic diseases. This review has emphasized the understanding of the PDCD4 role and to provide new ideas for the research, diagnosis, and treatment of tumors and metabolic diseases.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas de Ligação a RNA
11.
Iran J Parasitol ; 11(4): 431-440, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28127354

RESUMO

BACKGROUND: Toxoplasma gondii is an intracellular parasite, which infects one-third population of world. Humans and animals acquire infection by ingesting oocytes from feces of cats or by meat of other animals having cysts that may lead to congenital, ocular or cephalic toxoplasmosis. Either it is important to detect T. gondii from meat of food animals from retail shops or directly at slaughterhouses, which is meant for export. METHODS: The current research was done without time limitation using such terms as follows: "Toxoplasma gondii", "Meat", "Tissue cyst", "PCR", "LAMP", "Screening" and "Immunological assay" alone or in combination, in English language. The used electronic databases for searching included as follows: Pub-Med, Scopus, Google Scholar, Web of Science and Science Direct. The searches were limited to the published papers to English language. RESULTS: Sensitivity of different molecular techniques for diagnosis of Toxoplasma is real-time PCR > LAMP > conventional PCR. In addition to these DNA analysis tools, bioassay in mice and cats is considered as "gold standard" to detect T. gondii. CONCLUSION: This review article will help the readers for grasping advantages and limitations of different diagnostic tools for screening meat samples for T. gondii. This review also makes bibliography about the type of meat sample to be processed for diagnosis and different primers or sequences to be targeted for T. gondii by number of researches for its detection from meat or tissue sample using DNA amplification techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA